POOMA Object I/O for Version 2.3

Overview

The POOMA framework has been engineered to support rapid development of scientific and engineering applications. POOMA provides its user's with a high-level C++ language interface for creating numerical applications optimized for performance on platforms ranging from desktop computers to parallel supercomputers with thousands of processors. POOMA data abstractions and programming models are general, flexible, and user-extensible.

The POOMA I/O classes have been designed to provide efficient I/O services while keeping to the design philosophy of POOMA. POOMA I/O supports the abstractions that make the POOMA framework powerful and flexible by making the classes that embody them persistent. As with the rest of POOMA, the I/O system is both flexible and extensible by users as well as by developers.

POOMA Object Serialization and Storage Models

Object-oriented applications benefit enormously from object-oriented data management. After all, the main reason many programmers use object-oriented languages is to create and exploit new data types. POOMA supports two models of object storage. The first is object serialization, and the second is object storage.

The simplest of the two I/O models is serialization. Serialization is the process by which the state information of a given object is marshaled into sequence of bytes and inserted into an output stream. In the context of the serialization model, data is extracted in the same order as stored. Random access to objects is not possible unless the application maintains a lookup table of object instance locations. Nevertheless, this straightforward capability is well-suited to applications where efficiency is important and requirements are oriented more towards I/O than database functionality.

The next level of object persistence is object storage. At this level, objects are stored as uniquely identifiable members of a collection, each retrievable at random from the set of objects. POOMA I/O layers object storage over object serialization. Thus, once serialization is enabled for a given data type, object storage and query-based retrieval services are automatically supported.

Both object serialization and object storage persistence models are available to the user through their respective APIs. The next section describes these APIs and give examples. We also show how users can extend object persistence to new data types.

The goal of POOMA I/O is to provide simple, yet efficient object serialization and object storage persistence models, both of which have been shown to be useful in object-oriented frameworks.

Object Serialization

Since objects are generalized data types, enabling object persistence in effect means adding member functions that store and retrieve the state of a given object based on its particular structure and persistence requirements. There are two basic strategies for achieving this. One is to derive all persistence-capable objects from a common base class that supports a common virtual storage interface. The interface is then specialized for each supported class. The second strategy is to define a common storage interface externally and require implementation of the interface for any class that uses storage services. In POOMA we adopt the second strategy.

To support serialization, we define a common serialization interface and achieve polymorphism through template specialization.

The Serialization Interface

The POOMA object serialization interface is based on the following functions that must be implemented for any serializable class:

template <class Stream, class T>

int serialize(Stream& s, const T& t)

Serializes and instance of T to the given stream at the current stream position and returns the number of bytes.

template <class Stream, class T>

int deserialize(T& t, Stream& s)

Deserializes a stored object of type T starting at the current position in the given stream and instantiates the target instance. Returns the number of bytes read.

template <class T>

int serialSizeof(const T& t)

Computes the number of bytes that would be required to store this instance of T.

In these functions, the template parameter Stream plays the role of the stream class. Presently it can be one of the std::iostream classes, or a char* buffer. The parameter T is the data type of the instance to be stored.

The serialize() function takes an instance of type T and encodes it (according to its implementation for type T) as a series of bytes, inserting the series into the Stream instance s at its current position. The function returns the number of bytes in the serialized representation. The Stream position is updated accordingly.

The deserialize() function reads a series of bytes at the current Stream position and decodes setting the target instance of T (usually a default-constructed instance) to the state of the persistent object. Again the number of bytes in the stream is returned and the Stream position is updated.

The function serialSizeof() computes the size of the given instance were it to be serialized and returns the value. This function is useful for computing buffer requirements without performing any I/O operations.

Notice that serialize() and deserialize() follow a left-assignment convention. These core functions are the only interfaces that must be implemented in order to support a new data type. The following functions exploit the services of these basic operations to provide additional functionality.

template <class Stream, class T>

int serialize(Stream& s, const T& t, int index)

template <class Stream, class T>

int deserialize(T&, Stream& s, int index)

template <class Stream, class T>

int serializeN(Stream& s, const T* t, int num)

template <class Stream, class T>

int deserializeN(T* t, Stream& s, int num)

template <class Stream, class T>

int serializeN(Stream& s, const T* t, int num, int index)

template <class Stream, class T>

int deserializeN(T* t, Stream& s, int num, int index)

The first pair of functions seeks to the position given by index before performing the operations. The next pair of functions is to be used to serialize arrays of type T given a pointer to T. The final two are the array serialization functions with additional seek operations.

Example

Base serialization functions support single instances and arrays of the usual types including int, uint, long, ulong, float, double, std::complex<T> (where T is float or double), and std::string. The following example illustrates the use of serializers.

#include “IO/PoomaIO.h”

#include <iostream>

int k=200, karray[5]={1,2,3,4,5};

double d=3.1415, darray[3]= {1.2, 3.4, 5.6};

std::string str(“Fred”),

strarray[3]= {“Moe”, “Larry”, “Curly”};

std::fstream datafile(“myData.dat”, std::ios::out |

std::ios::binary);

int nBytes=0;

nBytes+= serialize(datafile, k);

nBytes+= serializeN(datafile, karray, 5);

nBytes+= serialize(datafile, d);

nBytes+= serializeN(datafile, darray, 3);

nBytes+= serialize(datafile, str);

nBytes+= serializeN(datafile, strarray, 3);

std::cout<<nBytes<<” bytes written to datafile”<<std::endl;

datafile.close();

Reading the data back in from the file is equally straightforward.

#include “IO/PoomaIO.h”

#include <iostream>

int k, karray[5];

double d, darray[3];

std::string str, strarray[3];

std::fstream datafile(“myData.dat”, std::ios::in);

int nBytes=0;

nBytes+= deserialize(k, datafile);

nBytes+= deserializeN(karray, datafile, 5);

nBytes+= deserialize(d, datafile);

nBytes+= deserializeN(darray, datafile, 3);

nBytes+= deserialize(str, datafile);

nBytes+= deserializeN(strarray, datafile, 3);

std::cout<<nBytes<<” bytes read from datafile”<<std::endl;

std::cout<<”k=”<<k<<std::endl;

std::cout<<”karray=”;

for(int i=0;i<5;i++){

std::cout<<karray[i]<<” “;

}

std::cout<<std::endl;

std::cout<<”d=”<<d<<std::endl;

std::cout<<”darray=”;

for(int i=0;i<3;i++){

std::cout<<darray[i]<<” “;

}

std::cout<<std::endl;

std::cout<<”str=”<<str<<std::endl;

std::cout<<”strarray=”;

for(int i=0;i<5;i++){

std::cout<<strarray[i]<<” “;

}

std::cout<<std::endl;

datafile.close();

The output should be:

89 bytes read from datafile

k=200

karray=1 2 3 4 5

d=3.1415

darray=1.2 3.4 5.6

str=Fred

strarray=Moe Larry Curly

The number of bytes read reflects the usual sizes of the int and double variables as well as the particular encoding scheme we’ve chosen to store std::string, namely an integer length followed by the number of characters in the string plus one.

Note that to recover the correct values, the objects must be read in the same order they were written. One could record the byte stream increments and use these to access the objects out of order by using the serializer functions that seek to a given position. However, this is just the kind of service already provided by the object storage layer which gives random access to objects as well as providing other useful data management services.

Object Sets and Object Storage

In POOMA, a high-level object storage model is provided that manages stored objects as distinguishable members of an object set. This is achieved in a straightforward way by constructing an object container class with a separate API. The role of this class is to present only logical storage abstractions to the application programmer while binding them to physical storage attributes internally.

The logical abstractions are:

· An object set (object container)

· A persistent object with a specific object ID and type

· Attribute sets that can be associated with objects

These are mapped internally to physical storage attributes such as:

· A file or other storage resource

· A starting location within the storage resource

· Stored attribute values

The immediate benefit of this high-level object model is the ability to reference objects without having to know their location on the storage resource, as well as support for useful queries based on descriptive attributes. A longer-term advantage is the ability to hide the nature of the storage resource from the application completely. For instance, it is easy in such a model to have an object set that is comprised of one file or many files, and that may be either local or remote. In fact there is no requirement that the objects be stored in files at all. In principle, the object set abstraction can be supported by local or remote memory, or by external databases.

The Object Storage API

The POOMA object storage interface is based on a class called ObjectStorageSet that allows its users to store objects and retrieve them by means of an object ID or handle, or by an object attribute such as a label or type. Since only the object ID is guaranteed to be unique, queries based on attributes may return a single instance (if at least one exists) or a set of object IDs.

The ObjectStorageSet public interface is as follows:

Construction

ObjectStorageSet(const std::string& setName,

 ObjectSetOpenMode mode)

This is the constructor. It creates an object storage set in the specified mode. ObjectSetOpenMode is an enumerated type with the following allowed values:

· Create. Create a new object storage set.

· Restore. Restore an existing object storage set.

The Restore setting also has a limited ability to recover from a system crash.

~ObjectStorageSet()

The destructor. It closes and releases all resources and exits gracefully.

Storage and Retrieval

template <class T>

ObjectID_t store(const T& t)

This is the main storage function. It stores an object instance with no additional attributes and returns the object ID.

template <class T>

ObjectID_t store(const T& t, const std::string& objectLabel)

This augmented storage function accepts a label attribute and associates it with the object. This attribute can later be used in queries.

template <class T>

bool retrieve(T& t, ObjectID_t id){

This is the main retrieval function. It instantiates an object given its ID and returns true or false indicating success or failure respectively.

template <class T>

ObjectID_t retrieve(T& t, const std::string& objectLabel)

This augmented version of the retrieval function permits retrieval based on object label instead of ID. Since object labels are not unique, it will retrieve the first object matching the label. A zero object ID means the query did not succeed.

Queries
std::string name() const

Returns the name of the object storage set.

int numObjects() const

Returns the number of objects in the set.

bool objectExists(ObjectID_t id) const

Check to see if an object with the given ID is in the set.

std::string objectType(const ObjectID_t& id)

Returns the type attribute of an object given its ID. The type ObjectID_t is the type defined for object IDs and is in fact a long integer in this implementation. The type attribute is a string generated automatically when an object is stored.

std::string objectLabel(const ObjectID_t& id)

Returns the label attribute of an object. An object label is an optional string label or name that can be associated with any object. Like the type attribute, it is one of the built-in object attributes supported in this release.

void objectLabel(ObjectID_t id, const std::string& objectLabel)

This function assigns a label to an object that has already been stored, provided its object ID is given.

ObjectID_t findLabel(const std::string& objectLabel)

This query will return the ID of the first object matching the given label. Object labels are simply descriptive attributes and are not required to be unique. There are no object IDs equal to the value zero. Therefore a zero ID value indicates failure in matching the query.

int count(const std::string& objectLabel)

Returns the number of objects matching the given label attribute.

ObjectSubset selectLabel(const std::string& objectLabel)

Returns a set of IDs of objects matching the given label. ObjectSubset is a typedef equivalent to std::set<ObjectID_t>.

Storage Resource Management

void close()

Close the object storage resource.

void flush()

Force a flush of the object set storage resources (e.g. files).

void setFlushFrequency(int freq)

Set the number of times a flush check is called before data and recovery files are flushed. These checks are performed internally based on some number of related events such as the storage of a new object instance. A conservative default value is implemented. For those most concerned about data recovery, a value of freq=1 will cause recovery information to be flushed at every check. If there is less concern, a larger value can be specified.

Storage Example

The following example stores a number of objects including a POOMA Array object.

#include <string>

#include <iostream>

#include "Pooma/Pooma.h"

#include "Array/Array.h"

#include "IO/ObjectSets.h"

int main(int argc, char *argv[])

{

 Pooma::initialize(argc, argv);

 std::cout<<"Test Object Sets: Part 1"<< std::endl;

 // Create a new object storage set.

 ObjectStorageSet obset("myData",Create);

 // Create a set of simple and complex objects to store.

 int k=200;

 double d=3.1415;

 Interval<3> I3(6,6,6);

 Array<3, double, CompressibleBrick> a(I3);

 ObjectID_t kid= obset.store(k,"k");

 std::cout<<"int object stored, ID="<<kid<<std::endl;

 ObjectID_t did= obset.store(d,"d");

 std::cout<<"double object stored, ID="<<did<<std::endl;

 ObjectID_t aid= obset.store(a,"a");

 std::cout<<"Array object stored,ID="<<aid<<std::endl;

 // Report the number of objects in the set.

 int numobj= obset.numObjects();

 std::cout<<numobj<<" objects in the object set"<<std::endl;

 // Store multiple instances of "d".

 d= 1.234;

 obset.store(d,"d");

 d= 5.678;

 obset.store(d,"d");

 // Report the number of objects in the set.

 numobj= obset.numObjects();

 std::cout<<numobj<<" objects in the object set"<<std::endl;

 // Close and quit.

 obset.close();

 Pooma::finalize();

 return 0;

}

Retrieval Example

The following example retrieves the data stored in the previous example.

#include <string>

#include <iostream>

#include "Pooma/Pooma.h"

#include "Array/Array.h"

#include "IO/ObjectSets.h"

int main(int argc, char *argv[])

{

 Pooma::initialize(argc, argv);

 // Restore the data set written in part 1.

 ObjectStorageSet myset("myData", Restore);

 int numobj;

 // Report the number of objects in the set.

 numobj= myset.numObjects();

 std::cout<<numobj<<" objects in the object set"<<std::endl;

 // Get the type descriptors of the objects and print them.

 std::string typeName;

 ObjectID_t oid;

 for(int i=0;i<numobj;i++){

 oid= i+1;

 typeName= myset.objectType(oid);

 std::cout<<"Object "<<oid<<" is of type "<<typeName<<std::endl;

 }

 // Create appropriate target objects for retrieval.

 int k;

 double d;

 Array<3, double, CompressibleBrick> a;

 // Retrieve the objects.

 ObjectID_t kid= myset.retrieve(k,"k");

 std::cout<<"int object retrieved, ID="<<kid<<std::endl;

 ObjectID_t did= myset.retrieve(d,"d");

 std::cout<<"double object retrieved, ID="<<did<<std::endl;

 ObjectID_t aid= myset.retrieve(a,"a");

 std::cout<<"Array object retrieved, ID="<<aid<<std::endl;

 // Print out the values.

 std::cout<<"k="<<k<<std::endl;

 std::cout<<"d="<<d<<std::endl;

 std::cout<<"a="<<a<<std::endl;

 // Ask for the number of objects called "d".

 int ndouble= myset.count("d");

 std::cout<<"Number of 'd' instances is "<<ndouble<<std::endl;

 // If the count is non-zero, get the set of object IDs corresponding

 // to the label.

 if(ndouble!=0){

 ObjectSubset dset= myset.selectLabel("d");

 ObjectSubset::iterator iter;

 for(iter= dset.begin(); iter!= dset.end(); iter++){

 myset.retrieve(d,*iter);

 std::cout<<"d="<<d<<std::endl;

 }

 }

 // Close and quit.

 myset.close();

 Pooma::finalize();

 return 0;

}

The Multi-Storage Object Set

The POOMA I/O system supports parallel and multi-context serialization by directly enabling the POOMA classes (e.g. MultiPatch arrays with Remote patches) that are associated with parallel multi-context behavior. POOMA I/O will preserve the state of the application as is, with files opened independently on each context, and distributed portions of objects stored in their respective files. This requires that the same multi-context configuration exists when the data is read back in. POOMA’s solution to the problem of reconfiguration involves the development of “smart” object sets that can adjust to a change in context configuration and remap the previously stored data to the present configuration. To do this requires further development of the ObjectStorageSet class since object identity is a crucial part of any solution. Serialization, with its implicit assumption of simple streams controlled by the user, is not sufficient.

As a prelude to development of multi-context object sets and support for remapping of distributed object, this release of POOMA includes an enhancement called the MultiStorageObjectSet. This class permits the user to define several separate file targets (in the same context) and direct individual objects to any of these. The class creates unique global IDs for the complete collection and resolves these to the local IDs of objects contained in individual ObjectStorageSet instances.

This is the public interface for MultiStorageObjectSet:

Construction

MultiStorageObjectSet(const std::string& setName,ObjectSetOpenMode mode)

Construct an object set with the given name containing no storage sets a priori.

~MultiStorageObjectSet()

Destructor.

StorageSetID_t openStorageSet(const std::string& storageSetName,

ObjectSetOpenMode mode)

Open a storage set as a component of the object set. Use the given open mode to access data.

Storage and Retrieval

template <class T>

ObjectID_t store(const T& t, StorageSetID_t ssID)

Main storage function.

template <class T>

ObjectID_t store(const T& t, StorageSetID_t ssID,

 const std::string& objectLabel)

Augmented storage function accepts a label attribute.

template <class T>

bool retrieve(T& t, ObjectID_t gid)

Main retrieval function instantiates an object given its ID. Returns true or false with success or failure respectively.

template <class T>

ObjectID_t retrieve(T& t, const std::string& objectLabel)

Augmented retrieval function allows retrieval based on an object label instead of ID.

Queries
std::string name()

Returns the name of the object set.

int numStorageSets() const

Return the number of storage sets in the object set.

int numObjects() const

Return the number of objects in all component sets.

std::string storageSetName(StorageSetID_t ssID) const

Return the name of a component object set.

std::string objectType(const ObjectID_t& gid)

Returns the type attribute of an object.

std::string objectLabel(const ObjectID_t& gid)

Returns the label attribute of an object.

ObjectID_t findLabel(const std::string& objectLabel)

Return the global ID of the first object matching the given label.

void objectLabel(ObjectID_t gid, const std::string& objectLabel)

Assigns a label to an object that has already been stored.

int count(const std::string& objectLabel)

Returns the number of objects matching the given label attribute.

ObjectSubset selectLabel(const std::string& objectLabel)

Returns a set of global IDs of objects matching the given label.

bool objectExists(ObjectID_t gid) const

Check to see in an object with the given global ID is in the set.

Storage Resource Management

void close()

Close the multi-file set.

void flush()

Flush all the component storage sets.

Example

#include <string>

#include <iostream>

#include "IO/MultiStorageObjectSets.h"

int main (void)

{

 // Open a new multifile object set.

 MultiStorageObjectSet

 obset1("MultiFile.dat",Create);

 // Add two new object storage sets to it.

 StorageSetID_t ssID1, ssID2;

 ssID1= obset1.openStorageSet("file1.dat", Create);

 std::cout<<"Storage set opened as

 #"<<ssID1<<std::endl;

 ssID2= obset1.openStorageSet("file2.dat", Create);

 std::cout<<"Storage set opened as

 #"<<ssID2<<std::endl;

 // Store an object in each storage set with a label.

 double d= 3.1415;

 int k= 1234;

 ObjectID_t gid1, gid2;

 gid1= obset1.store(d, ssID1, "doubleval");

 std::cout<<"double object stored with global ID="

 <<gid1<<std::endl;

 gid2= obset1.store(k, ssID2, "intval");

 std::cout<<"int object stored with global ID="

 <<gid2<<std::endl;

 // Close the object storage set.

 obset1.close();

 // Restore as a different object.

 MultiStorageObjectSet

 obset2("MultiFile.dat",Restore);

 // Retrieve the objects by label;

 double d2;

 int k2;

 obset2.retrieve(d2,"doubleval");

 std::cout<<"double object retrieved, value="

 <<d2<<std::endl;

 obset2.retrieve(k2,"intval");

 std::cout<<"int object retrieved, value="

 <<k2<<std::endl;

 // Close all object set components.

 obset2.close();

 return 0;

}
Supported POOMA Classes

The I/O library has a number of serializers written to support the existing POOMA classes. At the time this document was written, several high-level classes such as POOMA Mesh, Field and Particles classes were unsupported because they were currently under revision. However, support for these classes is not difficult to add (see Adding Support for New Classes below), and is in the development plan for minor releases after version 2.3.

As discussed above, it is only necessary to implement the core interface for a given class to have it fully supported under POOMA Object I/O. Support for POOMA classes is accomplished by implementing these in separate modules roughly corresponding to existing POOMA modules as reflected in the POOMA directory. The classes currently supported are listed in the table below along with their associated header files. To include support for all supported types it is only necessary to include the header file PoomaIO.h that contains references to all those listed.

	POOMA Header File
	POOMA Classes Supported

	Serializers.h
	Intrinsic types such as int, long, float, double

	MatrixIO.h
	Vector, Tensor, and TinyMatrix

	DomainIO.h
	Loc, Interval

	LayoutIO.h
	Node, UniformGridLayout, GridLayout, SparseTileLayout, DynamicLayout, DomainLayout

	EngineIO.h
	Engine classes of Brick, CompressibleBrick, and MultiPatch type

	RemoteEngineIO.h
	Remote engines of either Brick or CompressibleBrick type

	ArrayIO.h
	Array classes templated on any of the supported data types and engine types

Adding Support for New Classes

The process of adding support for new classes is very easy. The I/O system is based on the serializer interface and on a standardized interface for generating type identification strings based on compile-time polymorphism. To add I/O support for a new class easily the implementer should first be able to answer the following questions:

· What are the data members of the class that must be made persistent in order to recover the state of an instance?

· What is the process for instantiating an instance of the class and placing it in a valid and consistent state given those data members?

There are several features of a class that make creation of a serializer interface especially easy:

· The class has accessors for all necessary state variables.

· The class has a constructor or initialize() function that will accept all the necessary state variables and produce an instance in the proper state.

· As an alternative to the second feature we may have a class with a combination of constructor and mutator functions that accomplish the same goal.

If the class does not allow access to the required variables, the implementer could declare the serializing interface methods to be friends of the class. In situations where the originator of the class and the implementer of the serialization interface are the same, this is easy to do, though from an object-oriented design perspective less desirable.

For purposes of illustration we will work through the creation of a serialization interface and type identifier for a hypothetical class called DArray which implements a multidimensional array class that holds double values. The declaration of the class is as follows:

template <int Dim>

class DArray{

public:

 DArray(); // Default constructor.

 DArray(int* shape); // Construct with a

 // given array shape.

 ~DArray(); // Destructor.

 int size(int d); // Return the size of the

 // array in dimension d.

 void sizes(int* s); // Set the sizes of the

 // array for all dimensions.

 double* data(); // Return a pointer to the data

 // array.

 void data(double* vals); // Using the given data

 // array copy all values

 // to internal data

 // storage.

 double& operator[](int* index); // Get or assign

 // a value given

 // its index.

 void clear(); // Reset the array to the default

 // state.

};

To create a serialize() function for this class we write the following:

template <Class Stream, int Dim>

int serialize(Stream& s, const DArray<Dim>& a){

// Set the byte count to zero.

int nBytes=0;

// Get all the required variables to serialize.

// Create a state variable to hold the dimension.

// of the array.

int dim= Dim;

// Get the sizes of the array dimensions and

// compute the total number of elements.

int size[Dim], totalsize=1;

for(int i=0;i<dim;i++){

 size[i]= a.size(i);

 totalsize= totalsize*size[i];

}

// Get a pointer to the data.

double* values= a.data();

// Serialize the state variables using other

// serializers.

nBytes+= serialize(s,dim);

nBytes+= serializeN(s,size,dim);
nBytes+= serializeN(s,values,totalsize);

return nBytes;

}

The reverse of this function can be written:

template <class Stream, int Dim>

int deserialize(DArray<Dim>& a, Stream& s){

// Set the number of bytes to zero.

int nBytes=0;

// Create a state variable to hold the dimension.

// of the target array, and one to hold the source

// value.

int tdim= Dim, sdim;

// Deserialize the source dimension variable and

// use as a validity check on the target instance.

nBytes+= deserialize(sdim, s);

if(sdim!=tdim){

 // Do something.

}

// Check that the array is uninitalized (indicated

// by a NULL data pointer and clear if this is the

// case.

double* values= a.data();

if(values!=NULL){

 a.clear();

}

// Get the sizes of the source instance and

// set the dimension sizes (allocating storage).

int size[Dim];

nBytes+= deserializeN(size,s,sdim);
a.sizes(size);

// Compute the total size;

int totalsize=1;

for(int i=0;i<sdim;i++){

 totalsize= totalsize*size[i];

}

// Get a pointer to storage and read in the

// stored data. (Alternatively we could have

// allocated storage and copied the values.)

values= a.data();

nBytes+= deserializeN(values,s,totalsize);

return nBytes;

}

The final function in the serialization interface is the size computation.

template <int Dim>

int serialSizeof(const DArray<Dim>& a){

// Set the byte count to zero.

int nBytes=0;

// Get all the required variables to size.

// Create a state variable to hold the dimension.

// of the array.

int dim= Dim;

// Get the sizes of the array dimensions and

// compute the total number of elements.

int totalsize=1;

for(int i=0;i<dim;i++){

 totalsize= totalsize*a.size(i);

}

// Add the size of the dimension variable

// and the shape variables to the byte count.

nBytes+= (dim+1)*sizeof(int);

// Add the size of the data values

nBytes+= totalsize*sizeof(double);

return nBytes;

}

This is all that’s required to serialize instances of DArray.

To support object storage we must add a function that will generate a type identification string that has meaning to the users of this class. This will be used by the object storage set layer to identify the type. These functions are templated on type and are called PoomaCTTI() for “Compile-Time Type Identification.” We can write a PoomaCTTI function for DArray as follows:

template <int Dim >

std::string PoomaCTTI(const DArray<Dim>&){

 char charbuf[10];

 sprintf(charbuf,"DArray<%d>\0",Dim);

 return std::string(charbuf);

}

Once the key interface functions have been implemented, as illustrated in the examples above, the class is fully supported by the POOMA I/O system.

For More Information

For additional information, please contact the author.

John Ambrosiano

July 26, 2000

Advanced Computing Laboratory

MS B-287

Los Alamos National Laboratory

P.O. Box 1663

Los Alamos, NM 87455

(505) 665 0457

ambro@lanl.gov

POOMA Object I/O, Version 2.3

18

