I nt ernet Engi neering Task Force (I ETF) M Bel she

Request for Comments: 7540 Bi t Go
Cat egory: Standards Track R Peon
| SSN: 2070-1721 Googl e, Inc
M Thonson, Ed.

Mozill a

May 2015

Hypertext Transfer Protocol Version 2 (HTTP/2)

Abst ract

This specification describes an optimnm zed expression of the semantics
of the Hypertext Transfer Protocol (HTTP), referred to as HITP
version 2 (HTTP/2). HITP/2 enables a nore efficient use of network
resources and a reduced perception of latency by introducing header
field conpression and allowi ng rmultiple concurrent exchanges on the
sane connection. It also introduces unsolicited push of
representations fromservers to clients.

This specification is an alternative to, but does not obsolete, the
HTTP/ 1.1 nessage syntax. HITP' s existing semantics renmai n unchanged.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww.rfc-editor.org/info/rfc7540

Bel she, et al. St andards Track [Page 1]

RFC 7540 HTTP/ 2 May 2015

Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1.
2.

INtroduCti ON ... 4
HTTP/ 2 Protocol OVEerVIi @Wt e e 5
2.1, Document Organi zati On 6
2.2. Conventions and Terminology 6
Starting HITP/ 2 .. 7
3.1. HITP/2 Version ldentification 8
3.2. Starting HTTP/ 2 for "http" URIS 0., 8
3.2.1. HITP2-Settings Header Field 9
3.3. Starting HTTP/2 for "https" URIs 10
3.4, Starting HTTP/2 with Prior Knowedge 10
3.5. HITP/2 Connection Preface 11
HTITP Frames e e e e e 12
4.1, Frame FOrmal 12
4.2, Frame Size 13
4.3. Header Conpression and Deconpression 14
Streams and Multiplexing 15
5.1, Stream States 16
5.1.1. Streamldentifiers 21
5.1.2. Stream CONCUINTENCY .. oottt e e e e e 22
5.2, Flow Control 22
5.2.1. FlowControl Principles 23
5.2.2. Appropriate Use of Flow Control 24
5.3, Stream Priority 24
5.3. 1. Stream Dependenci €S 25
5.3.2. Dependency Weighting 26
5.3.3. Reprioritization 26
5.3.4. Prioritization State Managenent 27
5.3.5. Default Priorities 28
5.4. Error Handling 28
5.4.1. Connection Error Handling 29
5.4.2. StreamError Handling 29

Bel she, et al. St andards Track [Page 2]

RFC 7540 HTTP/ 2 May 2015
5.4.3. Connection Termnation, 30

5.5. Extending HTTP/ 2 30

6. Frame Definitions 31
6. L. DATA o e 31

6. 2. HEADERS 32

6. 3. PRIORITY .o 34

6. 4. RST_STREAM . .. i 36

6. 5. SETTINGS ... e e 36
6.5.1. SETTINGS Formatiiiiiii i 38

6.5.2. Defined SETTINGS Paranmetersc.. ... 38

6.5.3. Settings Synchronization 39

6.6. PUSH PROM SE e 40

6. 7. PING .. 42

6. 8. COAVAY . e 43
6.9. WINDOWN UPDATE e e 46
6.9.1. The FlowControl Wndow 47

6.9.2. Initial FlowControl Wndow Size 48

6.9.3. Reducing the StreamWndow Size 49

6. 10. CONTINUATI ON . ..t e e e e 49

7. Error CoUeS ..ot 50
8. HITP Message Exchanges i 51
8.1. HITP Request/Response Exchange 52
8.1.1. Upgrading fromHTTP/ 2 53

8.1.2. HITP Header Fields 53

8.1.3. Exanpl es ... 57

8.1.4. Request Reliability Mechanisnms in HTTP/2 60

8.2. Server Push 60
8.2.1. Push Requests 61

8.2.2. Push Responses 63

8.3. The CONNECT Method i 64

9. Additional HTTP Requirenents/Considerations 65
9.1. Connection Managementt 65
9.1.1. Connection ReUSE 66

9.1.2. The 421 (M sdirected Request) Status Code 66

9.2. Use of TLS Features 67
9.2.1. TLS 1.2 Features 67

9.2.2. TLS 1.2 Cipher Suitesc0 .. 68

10. Security ConsideratioOns 69
10. 1. Server Authority 69

10. 2. Cross-Protocol Attacks 69

10. 3. Intermedi ary Encapsulation Attacks 70

10. 4. Cacheability of Pushed Responses 70
10.5. Denial-of-Service Considerations 70
10.5.1. Limits on Header Block Size 71

10.5.2. CONNECT | SSUBS ...ttt e e e e e 72

10. 6. Use of Conpressi ONn e 72

10. 7. Use of Padding i 73
10.8. Privacy Considerations 73

Bel she, et al. St andards Track [Page 3]

RFC 7540 HTTP/ 2 May 2015
11. TANA Considerati ONS e e e 74
11.1. Registration of HTTP/2 ldentification Strings 74
11. 2. Frame Type Regi Stry e 75
11.3. Settings Regi stry 75
11.4. Error Code Regi Stry e 76
11.5. HTTP2-Settings Header Field Registration 77
11.6. PRI Method Registration 78
11.7. The 421 (M sdirected Request) HITP Status Code 78
11. 8. The h2c Upgrade Token i 78
12, ReferencCes 79
12.1. Normative References, 79
12.2. Informative References 81
Appendix A TLS 1.2 Cipher Suite Black List 83
Acknow edgement S 95
Aut hor s’ Addr 8SSES 96
1. Introduction
The Hypertext Transfer Protocol (HTTP) is a wildly successfu
protocol. However, the way HTTP/ 1.1 uses the underlying transport

([RFC7230], Section 6) has several characteristics that have a

negat

In pa

ive overall effect on application performance today.

rticular, HITP/ 1.0 all owed only one request to be outstanding at

a tine on a given TCP connection. HITP/ 1.1 added request pipelining,

but t
suffe
clien
serve

Furth
causi
TCP [
exces
conne

HTTPR/
HTTP

his only partially addressed request concurrency and stil

rs from head-of-1ine blocking. Therefore, HITP/1.0 and HTTP/ 1.1
ts that need to nake many requests use multiple connections to a
r in order to achi eve concurrency and thereby reduce |atency.

ernore, HTTP header fields are often repetitive and verbose,
ng unnecessary network traffic as well as causing the initial
TCP] congestion windowto quickly fill. This can result in
sive latency when nmultiple requests are made on a new TCP
ction.

2 addresses these issues by defining an optinized mappi ng of
s semantics to an underlying connection. Specifically, it

all ows interleaving of request and response nessages on the same

conne
al so
reque

Bel she,

ction and uses an efficient coding for HITP header fields. It
allows prioritization of requests, letting nore inportant
sts conplete nore quickly, further inproving perfornance

et al. St andards Track [Page 4]

RFC 7540 HTTP/ 2 May 2015

The resulting protocol is nore friendly to the network because fewer
TCP connections can be used in conparison to HITP/1.x. This neans

| ess conpetition with other flows and | onger-1lived connections, which
inturn lead to better utilization of avail abl e network capacity.

Finally, HTTP/2 also enables nore efficient processing of nessages
t hrough use of binary nmessage franing

2. HITP/ 2 Protocol Overview

HTTP/ 2 provides an optim zed transport for HITP semantics. HITP/2
supports all of the core features of HITP/1.1 but ains to be nore
efficient in several ways.

The basic protocol unit in HITP/2 is a frame (Section 4.1). Each
frane type serves a different purpose. For exanple, HEADERS and DATA
franes formthe basis of HITP requests and responses (Section 8.1);
other franme types |ike SETTINGS, W NDOW UPDATE, and PUSH PROM SE are
used in support of other HTTP/ 2 features.

Mul ti pl exi ng of requests is achi eved by having each HTTP request/
response exchange associated with its own stream (Section 5).
Streans are largely independent of each other, so a bl ocked or
stall ed request or response does not prevent progress on other
streans.

Fl ow control and prioritization ensure that it is possible to
efficiently use multiplexed streans. Flow control (Section 5.2)
hel ps to ensure that only data that can be used by a receiver is
transmitted. Prioritization (Section 5.3) ensures that linited
resources can be directed to the nost inportant streans first.

HTTP/ 2 adds a new interacti on node whereby a server can push
responses to a client (Section 8.2). Server push allows a server to
specul atively send data to a client that the server anticipates the
client will need, trading off sone network usage agai nst a potenti al
| atency gain. The server does this by synthesizing a request, which
it sends as a PUSH PROM SE frame. The server is then able to send a
response to the synthetic request on a separate stream

Because HITP header fields used in a connection can contain |arge
anounts of redundant data, franes that contain them are conpressed
(Section 4.3). This has especially advantageous inpact upon request
sizes in the common case, allowi ng many requests to be conpressed

i nto one packet.

Bel she, et al. St andards Track [Page 5]

RFC 7540 HTTP/ 2 May 2015

2.

2.

1. Docunent Organization
The HTTP/ 2 specification is split into four parts

o Starting HITP/2 (Section 3) covers how an HTTP/ 2 connection is
initiated.

o The frame (Section 4) and stream (Section 5) |ayers describe the
way HTTP/ 2 frames are structured and forned into nultipl exed
streans.

o Frane (Section 6) and error (Section 7) definitions include
details of the frame and error types used in HTTP/ 2.

0o HITP mappings (Section 8) and additional requirements (Section 9)
descri be how HTTP semantics are expressed using franes and
streans.

Whil e sone of the frane and stream | ayer concepts are isolated from
HTTP, this specification does not define a conpletely generic frane
layer. The frane and stream |l ayers are tailored to the needs of the
HTTP protocol and server push

2. Conventions and Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].
Al'l nuneric values are in network byte order. Values are unsigned
unl ess otherwi se indicated. Literal values are provided in decinal
or hexadeci mal as appropriate. Hexadecimal literals are prefixed
with "Ox" to distinguish themfromdecinmal literals.

The following ternms are used:

client: The endpoint that initiates an HTTP/2 connection. dients
send HTTP requests and receive HITP responses.

connection: A transport-layer connection between two endpoints.

connection error: An error that affects the entire HITP/ 2
connecti on.

endpoint: Either the client or server of the connection

Bel she, et al. St andards Track [Page 6]

RFC 7540 HTTP/ 2 May 2015

frame: The snallest unit of communication within an HTTP/ 2
connection, consisting of a header and a vari abl e-1ength sequence
of octets structured according to the frane type.

peer: An endpoint. Wen discussing a particul ar endpoint, "peer"
refers to the endpoint that is renote to the prinmary subject of
di scussi on.

receiver: An endpoint that is receiving franes.
sender: An endpoint that is transmtting franes.

server: The endpoint that accepts an HITP/ 2 connection. Servers
receive HTTP requests and send HTTP responses.

stream A bidirectional flow of frames within the HITP/ 2 connecti on
streamerror: An error on the individual HTTP/ 2 stream

Finally, the terns "gateway", "internediary", "proxy", and "tunnel"
are defined in Section 2.3 of [RFC7230]. Internediaries act as both
client and server at different tines.

The term "payl oad body" is defined in Section 3.3 of [RFC7230].
3. Starting HTTP/ 2

An HTTP/ 2 connection is an application-layer protocol running on top
of a TCP connection ([TCP]). The client is the TCP connection
initiator.

HTTP/ 2 uses the sane "http" and "https" URl schemes used by HTTP/1.1.
HTTP/ 2 shares the same default port nunbers: 80 for "http" URIs and
443 for "https" URIs. As a result, inplenentations processing
requests for target resource URIs like "http://exanple.org/foo" or
"https://exanple.combar” are required to first discover whether the
upstream server (the i mediate peer to which the client wi shes to
establish a connection) supports HTTP/ 2.

The means by which support for HTTP/2 is deternmined is different for

"http" and "https" URIs. Discovery for "http" URIs is described in
Section 3.2. Discovery for "https" URIs is described in Section 3. 3.

Bel she, et al. St andards Track [Page 7]

RFC 7540 HTTP/ 2 May 2015

3.1. HITP/2 Version ldentification
The protocol defined in this docunment has two identifiers

o0 The string "h2" identifies the protocol where HITP/ 2 uses
Transport Layer Security (TLS) [TLS12]. This identifier is used
in the TLS application-layer protocol negotiation (ALPN) extension
[TLS-ALPN] field and in any place where HTTP/2 over TLS is
identified.

The "h2" string is serialized into an ALPN protocol identifier as
the two-octet sequence: 0x68, 0x32.

0 The string "h2c" identifies the protocol where HTTP/2 is run over
cleartext TCP. This identifier is used in the HTTP/ 1.1 Upgrade
header field and in any place where HITP/2 over TCP is identified.

The "h2c" string is reserved fromthe ALPN identifier space but
descri bes a protocol that does not use TLS.

Negoti ating "h2" or "h2c" inplies the use of the transport, security,
fram ng, and nmessage semantics described in this docunent.

3.2. Starting HITP/2 for "http" URI's

A client that nakes a request for an "http" URI w thout prior

know edge about support for HITP/2 on the next hop uses the HITP
Upgrade nechani sm (Section 6.7 of [RFC7230]). The client does so by
maki ng an HTTP/ 1.1 request that includes an Upgrade header field with
the "h2c" token. Such an HTTP/ 1.1 request MJST include exactly one
HTTP2- Settings (Section 3.2.1) header field.

For exanpl e:

GET / HITP/1.1

Host: server. exanpl e. com

Connection: Upgrade, HTTP2-Settings

Upgr ade: h2c

HTTP2- Setti ngs: <base64url encodi ng of HITP/ 2 SETTINGS payl oad>

Requests that contain a payl oad body MIUST be sent in their entirety
before the client can send HTTP/2 franmes. This neans that a large
request can bl ock the use of the connection until it is conpletely
sent.

If concurrency of an initial request with subsequent requests is

i mportant, an OPTIONS request can be used to performthe upgrade to
HTTP/ 2, at the cost of an additional round trip.

Bel she, et al. St andards Track [Page 8]

RFC 7540 HTTP/ 2 May 2015

A server that does not support HTTP/2 can respond to the request as
t hough the Upgrade header field were absent:

HTTP/ 1.1 200 K
Cont ent - Lengt h: 243
Cont ent - Type: text/htni

A server MJST ignore an "h2" token in an Upgrade header field.
Presence of a token with "h2" inplies HITP/ 2 over TLS, which is
i nstead negoti ated as described in Section 3.3.

A server that supports HTTP/ 2 accepts the upgrade with a 101
(Switching Protocols) response. After the enpty line that term nates
the 101 response, the server can begin sending HTTP/2 frames. These
frames MJST include a response to the request that initiated the

upgr ade.

For exanpl e:

HTTP/ 1.1 101 Switchi ng Protocols
Connection: Upgrade
Upgr ade: h2c

[HTTP/ 2 connection ..

The first HITP/ 2 frame sent by the server MJST be a server connection
preface (Section 3.5) consisting of a SETTINGS franme (Section 6.5).
Upon receiving the 101 response, the client MJUST send a connection
preface (Section 3.5), which includes a SETTINGS frane.

The HTTP/ 1.1 request that is sent prior to upgrade is assigned a
streamidentifier of 1 (see Section 5.1.1) with default priority
values (Section 5.3.5). Stream1l is inplicitly "half-closed" from
the client toward the server (see Section 5.1), since the request is
conpleted as an HTTP/ 1.1 request. After conmencing the HITP/ 2
connection, stream1l is used for the response.

3.2.1. HITP2-Settings Header Field

A request that upgrades fromHTTP/1.1 to HTTP/2 MJST include exactly
one "HTTP2-Settings" header field. The HITP2-Settings header field

is a connection-specific header field that includes paraneters that

govern the HTTP/ 2 connection, provided in anticipation of the server
accepting the request to upgrade.

HTTP2- Setti ngs = t oken68

Bel she, et al. St andards Track [Page 9]

RFC 7540 HTTP/ 2 May 2015

A server MJST NOT upgrade the connection to HTTP/2 if this header
field is not present or if nore than one is present. A server MJST
NOT send this header field.

The content of the HITP2-Settings header field is the payload of a
SETTINGS frane (Section 6.5), encoded as a base64url string (that is,
the URL- and fil enane-safe Base64 encodi ng described in Section 5 of
[RFCA648], with any trailing '= characters onmitted). The ABNF

[RFC5234] production for "token68" is defined in Section 2.1 of

[RFC7235] .

Since the upgrade is only intended to apply to the i medi ate
connection, a client sending the HITP2-Settings header field MJST
al so send "HTTP2-Settings" as a connection option in the Connection
header field to prevent it frombeing forwarded (see Section 6.1 of
[RFC7230]) .

A server decodes and interprets these values as it would any other
SETTINGS franme. Explicit acknow edgenent of these settings

(Section 6.5.3) is not necessary, since a 101 response serves as
implicit acknow edgenent. Providing these values in the upgrade
request gives a client an opportunity to provide parameters prior to
receiving any franmes fromthe server

3.3. Starting HITP/2 for "https" URIs

A client that nakes a request to an "https" URI uses TLS [TLS12] with
the application-layer protocol negotiation (ALPN) extension
[TLS- ALPN .

HTTP/ 2 over TLS uses the "h2" protocol identifier. The "h2c"
protocol identifier MJUST NOT be sent by a client or selected by a
server; the "h2c" protocol identifier describes a protocol that does
not use TLS.

Once TLS negotiation is conplete, both the client and the server MJST
send a connection preface (Section 3.5).

3.4. Starting HITP/2 with Prior Know edge
A client can learn that a particul ar server supports HITP/ 2 by ot her
means. For exanple, [ALT-SVC] describes a nechanismfor advertising
this capability.
A client MJIST send the connection preface (Section 3.5) and then NMAY

i medi ately send HTTP/2 frames to such a server; servers can identify
t hese connections by the presence of the connection preface. This

Bel she, et al. St andards Track [Page 10]

RFC 7540 HTTP/ 2 May 2015

only affects the establishnment of HTTP/ 2 connections over cleartext
TCP; inplenentations that support HTTP/2 over TLS MUST use protoco
negotiation in TLS [TLS-ALPN] .

Li kewi se, the server MJST send a connection preface (Section 3.5).

W thout additional information, prior support for HITP/2 is not a
strong signal that a given server will support HITP/2 for future
connections. For exanple, it is possible for server configurations
to change, for configurations to differ between instances in
clustered servers, or for network conditions to change.

3.5. HITP/ 2 Connection Preface

In HTTP/ 2, each endpoint is required to send a connection preface as
a final confirmation of the protocol in use and to establish the
initial settings for the HITP/ 2 connection. The client and server
each send a different connection preface.

The client connection preface starts with a sequence of 24 octets,
which in hex notation is:

0x505249202a20485454502f 322e300d0a0d0a534d0d0a0d0a

That is, the connection preface starts with the string "PRl *

HTTP/ 2.0\ r\n\r\nSMr\n\r\n"). This sequence MJST be foll owed by a
SETTINGS frame (Section 6.5), which MAY be enpty. The client sends
the client connection preface i mediately upon receipt of a 101

(Swi tching Protocols) response (indicating a successful upgrade) or
as the first application data octets of a TLS connection. |If
starting an HTTP/ 2 connection with prior know edge of server support
for the protocol, the client connection preface is sent upon
connection establishnent.

Note: The client connection preface is selected so that a |l arge

proportion of HTTP/1.1 or HITP/ 1.0 servers and internediaries do
not attenpt to process further frames. Note that this does not

address the concerns raised in [TALKI NG .

The server connection preface consists of a potentially enpty
SETTINGS franme (Section 6.5) that MJST be the first frame the server
sends in the HTTP/ 2 connection

The SETTINGS franes received froma peer as part of the connection

preface MJST be acknow edged (see Section 6.5.3) after sending the
connection preface.

Bel she, et al. St andards Track [Page 11]

RFC 7540 HTTP/ 2 May 2015

To avoid unnecessary latency, clients are pernmitted to send
additional franes to the server imediately after sending the client
connection preface, without waiting to receive the server connection
preface. It is inportant to note, however, that the server
connection preface SETTINGS frame m ght include paranmeters that
necessarily alter how a client is expected to communicate with the
server. Upon receiving the SETTINGS frane, the client is expected to
honor any paraneters established. In sone configurations, it is
possible for the server to transnmit SETTINGS before the client sends
addi tional franes, providing an opportunity to avoid this issue.

Cients and servers MJIST treat an invalid connection preface as a
connection error (Section 5.4.1) of type PROTOCOL_ERROR A GOAVWAY
frane (Section 6.8) MAY be onmitted in this case, since an invalid
preface indicates that the peer is not using HTTP/ 2.

4. HITP Franmes

Once the HITP/ 2 connection is established, endpoints can begin
exchangi ng franes.

4., 1. Frame For mat

Al franes begin with a fixed 9-octet header followed by a vari abl e-
| engt h payl oad.

T e +

| Length (24)

S S S +

| Type (8) | Flags (8) |

R . . +
| R Stream Il dentifier (31)

+=+ +
| Frame Payl oad (0...)

o e m e +

Figure 1: Frane Layout

The fields of the frane header are defined as:

Length: The length of the frame payl oad expressed as an unsi gned
24-bit integer. Values greater than 2714 (16,384) MJST NOT be
sent unless the receiver has set a |arger value for
SETTI NGS_MAX_FRAME_SI ZE

The 9 octets of the frane header are not included in this val ue.

Bel she, et al. St andards Track [Page 12]

RFC 7540 HTTP/ 2 May 2015

Type: The 8-bit type of the frane. The frame type determines the
format and senmantics of the frame. |nplenentati ons MJST ignore
and discard any frane that has a type that is unknown.

Flags: An 8-bit field reserved for bool ean flags specific to the
frame type

Fl ags are assigned senantics specific to the indicated frame type.
Fl ags that have no defined senmantics for a particular frame type
MUST be ignored and MJST be |eft unset (0x0) when sendi ng.

R Areserved 1-bit field. The semantics of this bit are undefined,
and the bit MJST remain unset (0x0) when sendi ng and MJST be
i gnored when receiving.

Stream ldentifier: A streamidentifier (see Section 5.1.1) expressed
as an unsigned 31-bit integer. The value 0x0 is reserved for
frames that are associated with the connection as a whol e as
opposed to an individual stream

The structure and content of the frame payload is dependent entirely
on the frame type.

4.2. Frane Size

The size of a frane payload is linmted by the nmaxi num size that a
receiver advertises in the SETTI NGS_MAX_FRAME_SI ZE setting. This
setting can have any val ue between 2714 (16, 384) and 2"24-1

(16, 777, 215) octets, inclusive.

Al'l i nplenmentations MJST be capable of receiving and nmininmally
processing frames up to 2714 octets in length, plus the 9-octet frane
header (Section 4.1). The size of the frame header is not included
when describing frame sizes.

Note: Certain frane types, such as PING (Section 6.7), inpose
additional linmts on the anount of payload data al |l owed.

An endpoi nt MJST send an error code of FRAME SIZE ERROR if a frame
exceeds the size defined in SETTI NGS_MAX FRAME S| ZE, exceeds any
limt defined for the frane type, or is too snmall to contain
mandatory frame data. A frane size error in a frane that could alter
the state of the entire connection MIST be treated as a connection
error (Section 5.4.1); this includes any frame carrying a header

bl ock (Section 4.3) (that is, HEADERS, PUSH PROM SE, and

CONTI NUATI ON), SETTINGS, and any frame with a streamidentifier of O.

Bel she, et al. St andards Track [Page 13]

RFC 7540 HTTP/ 2 May 2015

Endpoints are not obligated to use all available space in a frane.
Responsi veness can be inproved by using franmes that are snaller than
the permitted maxi mum size. Sending large frames can result in
delays in sending tinme-sensitive frames (such as RST_STREAM

W NDOW UPDATE, or PRIORITY), which, if blocked by the transm ssion of
a large frane, could affect performance.

4.3. Header Conpression and Deconpression

Just as in HITP/1, a header field in HITP/2 is a name with one or
nore associ ated val ues. Header fields are used within HTTP request
and response nessages as well as in server push operations (see
Section 8.2).

Header lists are collections of zero or nore header fields. Wen
transnmtted over a connection, a header list is serialized into a
header bl ock using HTTP header conpression [COWRESSION]. The
serialized header block is then divided into one or nopre octet
sequences, called header block fragnents, and transmtted within the
payl oad of HEADERS (Section 6.2), PUSH PROM SE (Section 6.6), or
CONTI NUATI ON (Section 6.10) franes.

The Cooki e header field [COXKIE] is treated specially by the HITP
mappi ng (see Section 8.1.2.5).

A receiving endpoint reassenbl es the header bl ock by concatenating
its fragnments and then deconpresses the block to reconstruct the
header |ist.

A conpl ete header block consists of either:

0 a single HEADERS or PUSH PROM SE frame, with the END HEADERS fl ag
set, or

0 a HEADERS or PUSH PROM SE frane with the END HEADERS flag cl eared
and one or nore CONTI NUATI ON franes, where the | ast CONTI NUATI ON
frane has the END HEADERS fl ag set.

Header conpression is stateful. One conpression context and one
deconpressi on context are used for the entire connection. A decoding
error in a header block MJST be treated as a connection error
(Section 5.4.1) of type COVWPRESSI ON ERROR.

Each header block is processed as a discrete unit. Header bl ocks
MUST be transnmitted as a contiguous sequence of franmes, with no
interleaved franes of any other type or fromany other stream The
last frame in a sequence of HEADERS or CONTI NUATI ON franmes has the

Bel she, et al. St andards Track [Page 14]

RFC 7540 HTTP/ 2 May 2015

END HEADERS flag set. The last franme in a sequence of PUSH PROM SE
or CONTI NUATI ON franes has the END HEADERS flag set. This allows a
header bl ock to be logically equivalent to a single frane.

Header bl ock fragnments can only be sent as the payl oad of HEADERS
PUSH PROM SE, or CONTI NUATI ON franes because these franes carry data
that can nodify the conpression context naintained by a receiver. An
endpoi nt recei vi ng HEADERS, PUSH PROM SE, or CONTI NUATI ON franmes
needs to reassenbl e header bl ocks and perform deconpression even if
the frames are to be discarded. A receiver MIST termnate the
connection with a connection error (Section 5.4.1) of type
COVPRESSI ON ERROR i f it does not deconpress a header bl ock

5. Streams and Ml tipl exing

A "streant is an independent, bidirectional sequence of franes
exchanged between the client and server within an HTTP/ 2 connection
Streans have several inportant characteristics

0 A single HITP/ 2 connection can contain multiple concurrently open
streanms, with either endpoint interleaving franes frommnultiple
streans.

0 Streans can be established and used unilaterally or shared by
either the client or server

o Streans can be closed by either endpoint.

o The order in which franes are sent on a streamis significant.
Reci pi ents process franes in the order they are received. In
particul ar, the order of HEADERS and DATA franes is semantically
significant.

0 Streans are identified by an integer. Streamidentifiers are
assigned to streans by the endpoint initiating the stream

Bel she, et al. St andards Track [Page 15]

RFC 7540 HTTP/ 2 May 2015

5.1. Stream States

The lifecycle of a streamis shown in Figure 2.

Fom e e e - +
send PP | | recv PP
ymmm - | idle |--------
/ | | \
v S + v
[TS + | [TS +
| | | send H/ | |
y o | reserved | | recv H | reserved |------ .
| | (local) | | | (renmote) | |
| tmmmmmm e + \Y; Fommmmea e e + |
| | Hoeeoe- + | |
| | recv ES | | send ES |
| send H | y - | open |------- | recv H
| | / | | \ | |
| v Vv e + v Vv |
tmmmmmm e +	tmmmmmm e +				
	hal f			hal f	
	closed		send R/	<closed	
	(renote)		recv R	(local)	
Fomm e - +	Fomm e - +				
	send ES /	recv ES /			
	send R/ v send R/				
	recv R e + recv R				
send R/ ‘'----------- >		<----------- " send R/			
recv R	closed	recv R			
e e e e eeeaaeaaaaas >| R ’
Fome e +
send: endpoi nt sends this frame
recv: endpoi nt receives this frame

H: HEADERS frame (with inplied CONTI NUATI ONs)

PP: PUSH_PROM SE frane (with inplied CONTI NUATI ONs)
ES: END_STREAM fl ag

R RST_STREAM frane

Figure 2: Stream States
Note that this diagram shows streamstate transitions and the franes
and flags that affect those transitions only. 1In this regard,

CONTI NUATI ON frames do not result in state transitions; they are
effectively part of the HEADERS or PUSH PROM SE that they foll ow.

Bel she, et al. St andards Track [Page 16]

RFC 7540 HTTP/ 2 May 2015

For the purpose of state transitions, the END STREAMflag is
processed as a separate event to the frame that bears it; a HEADERS
frame with the END STREAM fl ag set can cause two state transitions.

Bot h endpoi nts have a subjective view of the state of a streamthat
could be different when franes are in transit. Endpoints do not
coordi nate the creation of streans; they are created unilaterally by
ei ther endpoint. The negative consequences of a mismatch in states
are limted to the "closed" state after sending RST_STREAM where
franes m ght be received for sone tinme after cl osing.

Streans have the followi ng states

i dle:
All streans start in the "idle" state.

The following transitions are valid fromthis state

* Sending or receiving a HEADERS frane causes the streamto
becone "open". The streamidentifier is selected as described
in Section 5.1.1. The sane HEADERS franme can al so cause a
streamto i medi ately becone "hal f-cl osed"

* Sending a PUSH PROM SE frane on another streamreserves the
idle streamthat is identified for later use. The streamstate
for the reserved streamtransitions to "reserved (local)".

* Receiving a PUSH PROM SE frame on anot her streamreserves an
idle streamthat is identified for later use. The streamstate
for the reserved streamtransitions to "reserved (renote)".

* Note that the PUSH PROM SE frame is not sent on the idle stream

but references the newy reserved streamin the Prom sed Stream
IDfield.

Recei ving any frane ot her than HEADERS or PRIORITY on a streamin
this state MUST be treated as a connection error (Section 5.4.1)
of type PROTOCOL_ERROR

reserved (local):
A streamin the "reserved (local)" state is one that has been
proni sed by sending a PUSH PROM SE frane. A PUSH PROM SE frane
reserves an idle stream by associating the streamw th an open
streamthat was initiated by the renote peer (see Section 8.2).

Bel she, et al. St andards Track [Page 17]

RFC 7540 HTTP/ 2 May 2015

In this state, only the following transitions are possible:

* The endpoint can send a HEADERS franme. This causes the stream
to open in a "half-closed (renpte)" state.

* Either endpoint can send a RST_STREAM frane to cause the stream
to beconme "closed". This releases the stream reservation.

An endpoi nt MJUST NOT send any type of frame other than HEADERS,
RST_STREAM or PRIORITY in this state.

A PRICRITY or W NDOW UPDATE frame MAY be received in this state.
Recei ving any type of franme other than RST_STREAM PRICRITY, or
W NDOW_UPDATE on a streamin this state MIST be treated as a
connection error (Section 5.4.1) of type PROTOCOL_ERROR

reserved (renote):

A streamin the "reserved (renote)" state has been reserved by a
renot e peer.

In this state, only the following transitions are possible:

* Receiving a HEADERS franme causes the streamto transition to
"hal f-cl osed (local)".

* Either endpoint can send a RST_STREAM frame to cause the stream
to beconme "closed". This releases the stream reservati on.

An endpoint MAY send a PRICRITY frane in this state to
reprioritize the reserved stream An endpoint MJUST NOT send any
type of frane other than RST_STREAM W NDOW UPDATE, or PRIORITY in
this state.

Recei ving any type of franme other than HEADERS, RST_STREAM or
PRIORITY on a streamin this state MJST be treated as a connection
error (Section 5.4.1) of type PROTOCO.L_ERROR

open:
A streamin the "open" state nmay be used by both peers to send
franes of any type. In this state, sending peers observe
advertised streamlevel flowcontrol linmts (Section 5.2).

Fromthis state, either endpoint can send a frane with an
END_STREAM fl ag set, which causes the streamto transition into
one of the "hal f-closed" states. An endpoint sending an

Bel she, et al. St andards Track [Page 18]

RFC 7540 HTTP/ 2 May 2015

END STREAM fl ag causes the stream state to becone "hal f-cl osed
(local)"; an endpoint receiving an END STREAM fl ag causes the
stream state to becone "hal f-closed (renmpte)".

Ei t her endpoint can send a RST_STREAM frame fromthis state,
causing it to transition imediately to "cl osed"

hal f-cl osed (I ocal):
A streamthat is in the "half-closed (local)" state cannot be used
for sending frames other than W NDOW UPDATE, PRIORITY, and
RST_STREAM

A streamtransitions fromthis state to "cl osed" when a frane that
contains an END STREAM flag is received or when either peer sends
a RST_STREAM frane.

An endpoi nt can receive any type of frame in this state.
Providing flow control credit using WNDOW UPDATE frames is
necessary to continue receiving flowcontrolled franes. 1In this
state, a receiver can ignore W NDOW UPDATE franes, which night
arrive for a short period after a frame bearing the END _STREAM
flag is sent.

PRIORITY franes received in this state are used to reprioritize
streans that depend on the identified stream

hal f-cl osed (renvote):
A streamthat is "half-closed (remote)" is no | onger being used by
the peer to send frames. In this state, an endpoint is no |onger
obligated to naintain a receiver flowcontrol w ndow.

I f an endpoint receives additional frames, other than

W NDOW UPDATE, PRICRITY, or RST_STREAM for a streamthat is in
this state, it MJST respond with a streamerror (Section 5.4.2) of
type STREAM CLGSED.

A streamthat is "half-closed (renote)" can be used by the
endpoint to send franes of any type. In this state, the endpoint
continues to observe advertised streamlevel flowcontrol linmts
(Section 5.2).

A streamcan transition fromthis state to "closed" by sending a

frane that contains an END STREAM fl ag or when either peer sends a
RST_STREAM f r amne.

Bel she, et al. St andards Track [Page 19]

RFC 7540 HTTP/ 2 May 2015

cl osed:
The "cl osed" state is the terminal state.

An endpoi nt MJUST NOT send franes other than PRIORITY on a cl osed
stream An endpoint that receives any frame other than PRIORITY
after receiving a RST_STREAM MJST treat that as a streamerror
(Section 5.4.2) of type STREAM CLOSED. Simlarly, an endpoint
that receives any franes after receiving a frame with the
END_STREAM fl ag set MJUST treat that as a connection error
(Section 5.4.1) of type STREAM CLCSED, unless the frame is
permtted as described bel ow.

W NDOW UPDATE or RST_STREAM franmes can be received in this state
for a short period after a DATA or HEADERS frame contai ning an
END STREAM flag is sent. Until the renote peer receives and
processes RST_STREAM or the frame bearing the END STREAM flag, it
m ght send franmes of these types. Endpoints MJST ignore

W NDOW UPDATE or RST_STREAM franes received in this state, though
endpoi nts MAY choose to treat frames that arrive a significant
time after sending END STREAM as a connection error

(Section 5.4.1) of type PROTOCOL_ERROR

PRIORI TY frames can be sent on closed streans to prioritize
streans that are dependent on the closed stream Endpoints SHOULD
process PRIORITY franes, though they can be ignored if the stream
has been renoved fromthe dependency tree (see Section 5.3.4).

If this state is reached as a result of sending a RST_STREAM
frane, the peer that receives the RST_STREAM ni ght have al ready
sent -- or enqueued for sending -- franmes on the streamthat
cannot be withdrawn. An endpoint MJST ignore franmes that it
receives on closed streans after it has sent a RST_STREAM frane.
An endpoi nt MAY choose to linit the period over which it ignores
franes and treat frames that arrive after this time as being in
error.

Fl ow-controlled frames (i.e., DATA) received after sending
RST_STREAM are counted toward the connection flow control w ndow.
Even though these franes might be ignored, because they are sent
before the sender receives the RST_STREAM the sender will
consider the frames to count against the flow control w ndow

An endpoi nt night receive a PUSH PROM SE frane after it sends
RST_STREAM PUSH PROM SE causes a streamto becone "reserved"
even if the associated stream has been reset. Therefore, a
RST_STREAM i s needed to cl ose an unwanted prom sed stream

Bel she, et al. St andards Track [Page 20]

RFC 7540 HTTP/ 2 May 2015

In the absence of nore specific guidance el sewhere in this docunent,

i mpl ement ati ons SHOULD treat the receipt of a frame that is not
expressly permitted in the description of a state as a connection
error (Section 5.4.1) of type PROTOCOL_ERRCR Note that PRICORITY can
be sent and received in any streamstate. Franes of unknown types
are ignored.

An exanpl e of the state transitions for an HTTP request/response
exchange can be found in Section 8.1. An exanple of the state
transitions for server push can be found in Sections 8.2.1 and 8. 2. 2.

5.1.1. Streamldentifiers

Streans are identified with an unsigned 31-bit integer. Streans
initiated by a client MJST use odd-nunbered streamidentifiers; those
initiated by the server MJST use even-nunbered streamidentifiers. A
streamidentifier of zero (0x0) is used for connection contro
messages; the streamidentifier of zero cannot be used to establish a
new stream

HTTP/ 1.1 requests that are upgraded to HITP/2 (see Section 3.2) are
responded to with a streamidentifier of one (0x1). After the
upgrade conpl etes, streamOxl1l is "half-closed (local)" to the client.
Theref ore, stream O0x1 cannot be selected as a new streamidentifier
by a client that upgrades from HTTP/ 1. 1.

The identifier of a newly established stream MJST be nunerically
greater than all streans that the initiating endpoint has opened or
reserved. This governs streans that are opened using a HEADERS frane
and streans that are reserved using PUSH PROM SE. An endpoi nt that
recei ves an unexpected streamidentifier MJUST respond with a
connection error (Section 5.4.1) of type PROTOCOL_ERRCR

The first use of a new streamidentifier inplicitly closes al

streams in the "idle" state that mi ght have been initiated by that
peer with a |ower-valued streamidentifier. For exanple, if a client
sends a HEADERS frane on stream 7 w thout ever sending a franme on
stream 5, then stream5 transitions to the "closed" state when the
first frame for stream7 is sent or received

Streamidentifiers cannot be reused. Long-lived connections can
result in an endpoint exhausting the avail abl e range of stream
identifiers. Aclient that is unable to establish a new stream
identifier can establish a new connection for new streans. A server
that is unable to establish a new streamidentifier can send a GOAVWAY
frane so that the client is forced to open a new connection for new
streans.

Bel she, et al. St andards Track [Page 21]

RFC 7540 HTTP/ 2 May 2015

5.1.2. Stream Concurrency

A peer can limt the nunber of concurrently active streans using the
SETTI NGS_MAX_CONCURRENT_STREAMS paraneter (see Section 6.5.2) within
a SETTINGS frane. The maxi num concurrent streans setting is specific
to each endpoint and applies only to the peer that receives the
setting. That is, clients specify the maxi num nunber of concurrent
streams the server can initiate, and servers specify the nmaxi num
nurmber of concurrent streanms the client can initiate.

Streans that are in the "open" state or in either of the "half-

cl osed" states count toward the nmaxi mum nunber of streans that an
endpoint is permtted to open. Streanms in any of these three states
count toward the |linmt advertised in the

SETTI NGS_MAX_CONCURRENT_STREAMS setting. Streams in either of the
"reserved" states do not count toward the streamlimt.

Endpoi nts MJUST NOT exceed the limt set by their peer. An endpoint
that receives a HEADERS franme that causes its advertised concurrent
streamlimt to be exceeded MIST treat this as a streamerror
(Section 5.4.2) of type PROTOCOL_ERROR or REFUSED STREAM The choice
of error code determ nes whether the endpoint w shes to enable
automatic retry (see Section 8.1.4) for details).

An endpoi nt that w shes to reduce the val ue of

SETTI NGS_MAX_CONCURRENT_STREAMS to a value that is below the current
nurmber of open streams can either close streans that exceed the new
val ue or allow streanms to conplete

5.2. Flow Control

Using streams for nultiplexing introduces contention over use of the
TCP connection, resulting in blocked streans. A flowcontrol schene
ensures that streams on the sane connection do not destructively
interfere with each other. Flow control is used for both individua
streanms and for the connection as a whol e.

HTTP/ 2 provides for flow control through use of the W NDOW UPDATE
frame (Section 6.9).

Bel she, et al. St andards Track [Page 22]

RFC 7540 HTTP/ 2 May 2015

5.2.1. FlowControl Principles

HTTP/ 2 stream flow control ains to allow a variety of flowcontro
algorithms to be used without requiring protocol changes. Flow
control in HITP/2 has the follow ng characteristics

1. Flowcontrol is specific to a connection. Both types of flow
control are between the endpoints of a single hop and not over
the entire end-to-end path.

2. Flowcontrol is based on WNDOW UPDATE franmes. Receivers
adverti se how many octets they are prepared to receive on a
stream and for the entire connection. This is a credit-based
schene.

3. Flowcontrol is directional with overall control provided by the
receiver. A receiver MAY choose to set any wi ndow size that it
desires for each streamand for the entire connection. A sender
MUST respect flowcontrol limts inposed by a receiver. dients,
servers, and internediaries all independently advertise their
flow control wi ndow as a receiver and abide by the flowcontro
limts set by their peer when sending.

4, The initial value for the flowcontrol w ndow is 65,535 octets
for both new streans and the overall connection

5. The frame type determ nes whether flow control applies to a
franme. O the frames specified in this docunent, only DATA
franes are subject to flow control; all other frame types do not
consune space in the advertised flow control w ndow. This
ensures that inportant control franes are not bl ocked by flow
control

6. Fl ow control cannot be di sabl ed.

7. HITP/ 2 defines only the format and semantics of the W NDOW UPDATE
franme (Section 6.9). This docunent does not stipulate how a
recei ver decides when to send this frane or the value that it
sends, nor does it specify how a sender chooses to send packets.
| mpl enentations are able to select any algorithmthat suits their
needs.

| mpl enent ati ons are al so responsi bl e for managi ng how requests and
responses are sent based on priority, choosing howto avoid head- of -
Iine blocking for requests, and managi ng the creation of new streans.
Al gorithm choices for these could interact with any flow control

al gorithm

Bel she, et al. St andards Track [Page 23]

RFC 7540 HTTP/ 2 May 2015

5.2.2. Appropriate Use of Flow Contro

Fl ow control is defined to protect endpoints that are operating under
resource constraints. For exanple, a proxy needs to share nmenory

bet ween many connections and al so m ght have a sl ow upstream
connection and a fast downstream one. Flow control addresses cases
where the receiver is unable to process data on one streamyet wants
to continue to process other streans in the same connection

Depl oynments that do not require this capability can advertise a flow
control w ndow of the maxi mum size (2731-1) and can maintain this

wi ndow by sendi ng a W NDOW UPDATE franme when any data is received.
This effectively disables flow control for that receiver

Conversely, a sender is always subject to the flow control w ndow
advertised by the receiver.

Depl oyments with constrained resources (for exanple, nmenory) can
enploy flow control to linit the anount of nenory a peer can consune.
Not e, however, that this can |ead to suboptimal use of available
network resources if flow control is enabled w thout know edge of the
bandwi dt h- del ay product (see [RFC7323]).

Even with full awareness of the current bandw dt h-del ay product,

i npl enentation of flow control can be difficult. Wen using flow
control, the receiver MIST read fromthe TCP receive buffer in a
timely fashion. Failure to do so could |ead to a deadl ock when
critical frames, such as W NDOW UPDATE, are not read and acted upon

5.3. StreamPriority

A client can assign a priority for a new stream by includi ng
prioritization information in the HEADERS frane (Section 6.2) that
opens the stream At any other tinme, the PRRORITY frame

(Section 6.3) can be used to change the priority of a stream

The purpose of prioritization is to allow an endpoint to express how
it would prefer its peer to allocate resources when nmanagi ng
concurrent streams. Most inportantly, priority can be used to sel ect
streanms for transmitting frames when there is linited capacity for
sendi ng.

Streans can be prioritized by narking them as dependent on the
conpl etion of other streans (Section 5.3.1). Each dependency is
assigned a relative weight, a nunber that is used to determ ne the
relative proportion of available resources that are assigned to
streanms dependent on the sane stream

Bel she, et al. St andards Track [Page 24]

RFC 7540 HTTP/ 2 May 2015

Explicitly setting the priority for a streamis input to a
prioritization process. It does not guarantee any particul ar
processing or transmi ssion order for the streamrelative to any other
stream An endpoint cannot force a peer to process concurrent
streams in a particular order using priority. Expressing priority is
therefore only a suggestion

Prioritization information can be onmitted from nessages. Defaults
are used prior to any explicit val ues being provided (Section 5.3.5).

5.3.1. Stream Dependenci es

Each stream can be given an explicit dependency on another stream
I ncl udi ng a dependency expresses a preference to allocate resources
to the identified streamrather than to the dependent stream

A streamthat is not dependent on any other streamis given a stream
dependency of 0x0. |In other words, the non-existent streamO forns
the root of the tree.

A stream that depends on another streamis a dependent stream The
stream upon which a streamis dependent is a parent stream A
dependency on a streamthat is not currently in the tree -- such as a
streamin the "idle" state -- results in that stream being given a
default priority (Section 5.3.5).

When assigning a dependency on another stream the streamis added as
a new dependency of the parent stream Dependent streans that share
the sane parent are not ordered with respect to each other. For
exanple, if streans B and C are dependent on stream A, and if stream
Dis created with a dependency on stream A, this results in a
dependency order of A followed by B, C, and D in any order.

A A
I\ ==> /\
B C BDC

Figure 3: Exanple of Default Dependency Creation

An exclusive flag allows for the insertion of a new |evel of
dependenci es. The exclusive flag causes the streamto becone the
sol e dependency of its parent stream causing other dependencies to
becone dependent on the exclusive stream |In the previous exanpl e,

if streamDis created with an exclusive dependency on streamA, this
results in D becom ng the dependency parent of B and C

Bel she, et al. St andards Track [Page 25]

RFC 7540 HTTP/ 2 May 2015

A
A |
[\ ==> D
B C [\
B C

Fi gure 4: Exanpl e of Exclusive Dependency Creation

I nsi de the dependency tree, a dependent stream SHOULD only be

al l ocated resources if either all of the streans that it depends on
(the chain of parent streanms up to 0x0) are closed or it is not
possi bl e to nmake progress on them

A stream cannot depend on itself. An endpoint MJST treat this as a
streamerror (Section 5.4.2) of type PROTOCOL_ERRCR

5.3.2. Dependency Wi ghting

Al'l dependent streans are allocated an integer wei ght between 1 and
256 (inclusive).

Streams with the same parent SHOULD be al l ocated resources
proportionally based on their weight. Thus, if stream B depends on
stream A with weight 4, stream C depends on stream A with weight 12,
and no progress can be nade on stream A, stream B ideally receives
one-third of the resources allocated to streamC

5.3.3. Reprioritization

Stream priorities are changed using the PRRORITY frane. Setting a
dependency causes a streamto becone dependent on the identified
parent stream

Dependent streanms nove with their parent streamif the parent is
reprioritized. Setting a dependency with the exclusive flag for a
reprioritized stream causes all the dependenci es of the new parent
streamto becone dependent on the reprioritized stream

If a streamis made dependent on one of its own dependencies, the
fornerly dependent streamis first noved to be dependent on the
reprioritized streanis previous parent. The noved dependency retains
its weight.

For exanpl e, consider an original dependency tree where B and C
depend on A, D and E depend on C, and F depends on D. If A is nade
dependent on D, then D takes the place of A. Al other dependency
rel ati onshi ps stay the sane, except for F, which becones dependent on
Aif the reprioritization is exclusive.

Bel she, et al. St andards Track [Page 26]

RFC 7540 HTTP/ 2 May 2015

X X X X
I [\ I I
A D A D D
/I \ / /I \ I\
B C == F B C ==> F A oR A
[\ | [\ [\
D E E B C BCF
I I I
F E E
(i ntermedi at e) (non-excl usi ve) (excl usi ve)

Fi gure 5: Exanpl e of Dependency Reordering

5.3.4. Prioritization State Managenent

When a streamis renoved fromthe dependency tree, its dependencies
can be noved to becone dependent on the parent of the closed stream
The wei ghts of new dependencies are recal cul ated by distributing the
wei ght of the dependency of the closed stream proportionally based on
the weights of its dependenci es.

Streanms that are renoved from the dependency tree cause somne
prioritization information to be lost. Resources are shared between
streans with the sane parent stream which neans that if a streamin
that set closes or becones bl ocked, any spare capacity allocated to a
streamis distributed to the inmedi ate nei ghbors of the stream
However, if the common dependency is renoved fromthe tree, those
streams share resources with streans at the next highest |evel

For exanpl e, assune streans A and B share a parent, and streans C and
D both depend on stream A, Prior to the renoval of streamA, if
streans A and D are unable to proceed, then stream C receives all the

resources dedicated to streamA. |If stream A is renoved fromthe
tree, the weight of stream A is divided between streanms C and D. |If
stream D is still unable to proceed, this results in streamC

receiving a reduced proportion of resources. For equal starting
wei ghts, C receives one third, rather than one half, of available
resour ces

It is possible for a streamto becone closed while prioritization
informati on that creates a dependency on that streamis in transit.
If a streamidentified in a dependency has no associated priority

i nformati on, then the dependent streamis instead assigned a default
priority (Section 5.3.5). This potentially creates subopti nal
prioritization, since the streamcould be given a priority that is
different fromwhat is intended

Bel she, et al. St andards Track [Page 27]

RFC 7540 HTTP/ 2 May 2015

To avoid these problens, an endpoint SHOULD retain stream
prioritization state for a period after streans beconme closed. The
| onger state is retained, the |ower the chance that streans are
assigned incorrect or default priority val ues.

Simlarly, streanms that are in the "idle" state can be assigned
priority or becone a parent of other streans. This allows for the
creation of a grouping node in the dependency tree, which enables
nore flexible expressions of priority. Ildle streams begin with a
default priority (Section 5.3.5).

The retention of priority information for streans that are not
counted toward the linmt set by SETTINGS MAX CONCURRENT STREAMS coul d
create a large state burden for an endpoint. Therefore, the anount
of prioritization state that is retained MAY be linited.

The amount of additional state an endpoint maintains for
prioritization could be dependent on | oad; under high | oad,
prioritization state can be discarded to |limt resource conmtnents.
In extrene cases, an endpoint could even discard prioritization state
for active or reserved streans. If alint is applied, endpoints
SHOULD maintain state for at |east as nany streans as all owed by
their setting for SETTINGS MAX_ CONCURRENT_ STREAMS. | npl ementati ons
SHOULD al so attenpt to retain state for streans that are in active
use in the priority tree.

If it has retai ned enough state to do so, an endpoint receiving a
PRIORITY frame that changes the priority of a closed stream SHOULD
alter the dependencies of the streans that depend on it.

5.3.5. Default Priorities
Al'l streans are initially assigned a non-excl usive dependency on
stream 0x0. Pushed streans (Section 8.2) initially depend on their
associ ated stream In both cases, streans are assigned a default
wei ght of 16.

5.4. Error Handling

HTTP/ 2 frami ng permts two classes of error:

o An error condition that renders the entire connection unusable is
a connection error.

O An error in an individual streamis a streamerror

A list of error codes is included in Section 7.

Bel she, et al. St andards Track [Page 28]

RFC 7540 HTTP/ 2 May 2015

5.4.1. Connection Error Handling

A connection error is any error that prevents further processing of
the frame |layer or corrupts any connection state.

An endpoi nt that encounters a connection error SHOULD first send a
GOAVAY frame (Section 6.8) with the streamidentifier of the |ast
streamthat it successfully received fromits peer. The GOAVAY frane
i ncludes an error code that indicates why the connection is
termnating. After sending the GOAWAY frame for an error condition,
t he endpoi nt MJUST cl ose the TCP connecti on.

It is possible that the GOAVWAY will not be reliably received by the
recei ving endpoint ([RFCr230], Section 6.6 describes how an inmedi ate
connection close can result in data loss). 1In the event of a
connection error, GOAVWAY only provides a best-effort attenpt to
communi cate with the peer about why the connection is being

t er m nat ed.

An endpoint can end a connection at any tine. |In particular, an
endpoi nt MAY choose to treat a streamerror as a connection error.
Endpoi nts SHOULD send a GOAVAY frane when endi ng a connecti on,
providing that circunstances permt it.

5.4.2. Stream Error Handling

A streamerror is an error related to a specific streamthat does not
af fect processing of other streans.

An endpoint that detects a streamerror sends a RST_STREAM frane
(Section 6.4) that contains the streamidentifier of the stream where
the error occurred. The RST_STREAM frame includes an error code that
i ndi cates the type of error.

A RST_STREAM is the last franme that an endpoint can send on a stream
The peer that sends the RST_STREAM frame MJST be prepared to receive
any frames that were sent or enqueued for sending by the renote peer.
These frames can be ignored, except where they nodify connection
state (such as the state maintai ned for header conpression

(Section 4.3) or flow control).

Normal | y, an endpoi nt SHOULD NOT send nore than one RST_STREAM frane
for any stream However, an endpoint MAY send additional RST_STREAM
franmes if it receives frames on a closed stream after nore than a
round-trip tinme. This behavior is permitted to deal w th m sbehaving
i mpl enent ati ons.

Bel she, et al. St andards Track [Page 29]

RFC 7540 HTTP/ 2 May 2015
To avoid | ooping, an endpoi nt MJUST NOT send a RST_STREAM i n response
to a RST_STREAM frane.

5.4.3. Connection Term nation
If the TCP connection is closed or reset while streans remain in
"open" or "half-closed" state, then the affected streans cannot be

automatically retried (see Section 8.1.4 for details).

5.5. Extending HTTP/ 2

HTTP/ 2 permits extension of the protocol. Wthin the lintations
described in this section, protocol extensions can be used to provide
additional services or alter any aspect of the protocol. Extensions

are effective only within the scope of a single HTTP/2 connecti on.

This applies to the protocol elenents defined in this docunent. This
does not affect the existing options for extending HITP, such as
defini ng new net hods, status codes, or header fields.

Extensions are pernmitted to use new frame types (Section 4.1), new
settings (Section 6.5.2), or new error codes (Section 7). Registries
are established for managi ng these extension points: frane types
(Section 11.2), settings (Section 11.3), and error codes

(Section 11.4).

| mpl enent ati ons MJUST i gnore unknown or unsupported values in al

ext ensi bl e protocol elements. |nplenmentations MJST discard franes

t hat have unknown or unsupported types. This nmeans that any of these
ext ensi on points can be safely used by extensions wi thout prior
arrangenent or negotiation. However, extension franes that appear in
the mddl e of a header block (Section 4.3) are not pernitted; these
MUST be treated as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

Ext ensi ons that coul d change the semantics of existing protoco
conponents MJST be negotiated before being used. For exanple, an
extension that changes the | ayout of the HEADERS frame cannot be used
until the peer has given a positive signal that this is acceptable.
In this case, it could also be necessary to coordi nate when the
revised |l ayout cones into effect. Note that treating any franes

ot her than DATA franes as flow controlled is such a change in
semantics and can only be done through negotiation

Thi s docunent doesn’t nmandate a specific nmethod for negotiating the
use of an extension but notes that a setting (Section 6.5.2) could be
used for that purpose. |If both peers set a value that indicates

wi | lingness to use the extension, then the extension can be used. |f

Bel she, et al. St andards Track [Page 30]

RFC 7540 HTTP/ 2 May 2015

a setting is used for extension negotiation, the initial value MJST
be defined in such a fashion that the extension is initially
di sabl ed.

6. Frame Definitions

This specification defines a nunber of frane types, each identified
by a unique 8-bit type code. Each frane type serves a distinct
purpose in the establishnment and nmanagenent either of the connection
as a whole or of individual streans.

The transmi ssion of specific frane types can alter the state of a
connection. |f endpoints fail to nmaintain a synchronized view of the
connection state, successful conmunication within the connection will
no | onger be possible. Therefore, it is inmportant that endpoints
have a shared conprehension of how the state is affected by the use
any given frane.

6.1. DATA

DATA franes (type=0x0) convey arbitrary, variable-length sequences of
octets associated with a stream One or nore DATA franes are used
for instance, to carry HTTP request or response payl oads.

DATA franes MAY al so contain padding. Padding can be added to DATA
franes to obscure the size of nmessages. Padding is a security
feature; see Section 10.7.

S +

| Pad Length? (8)]

e o n o e e e oiaoo--- +
| Data (*)

o m o e e e e e e e oo +
| Paddi ng (*)

o e m e +

Fi gure 6: DATA Frane Payl oad
The DATA frame contains the follow ng fields:

Pad Length: An 8-bit field containing the length of the frane
padding in units of octets. This field is conditional (as
signified by a "?" in the diagram) and is only present if the
PADDED flag is set.

Data: Application data. The anount of data is the remai nder of the

franme payl oad after subtracting the length of the other fields
that are present.

Bel she, et al. St andards Track [Page 31]

RFC 7540 HTTP/ 2 May 2015

Paddi ng: Paddi ng octets that contain no application senantic val ue.
Paddi ng octets MJUST be set to zero when sending. A receiver is
not obligated to verify padding but MAY treat non-zero paddi ng as
a connection error (Section 5.4.1) of type PROTOCO._ERROR

The DATA frane defines the follow ng flags:

END_STREAM (0x1): When set, bit O indicates that this frame is the
| ast that the endpoint will send for the identified stream
Setting this flag causes the streamto enter one of the "half-
cl osed" states or the "closed" state (Section 5.1).

PADDED (0x8): When set, bit 3 indicates that the Pad Length field
and any padding that it describes are present.

DATA franes MJST be associated with a stream |If a DATA frane is
recei ved whose streamidentifier field is 0x0, the recipient MJST
respond with a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

DATA franes are subject to flow control and can only be sent when a
streamis in the "open" or "half-closed (renote)" state. The entire
DATA franme payload is included in flow control, including the Pad
Length and Padding fields if present. |If a DATA frane is received
whose streamis not in "open" or "half-closed (local)" state, the
reci pient MUST respond with a streamerror (Section 5.4.2) of type
STREAM CLGSED

The total number of padding octets is determ ned by the value of the
Pad Length field. |If the length of the padding is the Iength of the
franme payl oad or greater, the recipient MIST treat this as a
connection error (Section 5.4.1) of type PROTOCOL_ERRCR

Note: A frame can be increased in size by one octet by including a
Pad Length field with a value of zero.

6.2. HEADERS
The HEADERS franme (type=0x1) is used to open a stream (Section 5.1),
and additionally carries a header block fragment. HEADERS frames can

be sent on a streamin the "idle", "reserved (local)", "open", or
"hal f-cl osed (renote)" state.

Bel she, et al. St andards Track [Page 32]

RFC 7540 HTTP/ 2 May 2015

. +

| Pad Length? (8)]

e I e . +
| El St ream Dependency? (31)

[TR S o e +
| Weight? (8)

Fobemmeeiaaaaaa S . +
| Header Bl ock Fragnent (*)
e T +
| Paddi ng (*)

o e m e +

Fi gure 7: HEADERS Frane Payl oad
The HEADERS frame payl oad has the follow ng fields:

Pad Length: An 8-bit field containing the length of the frane
padding in units of octets. This fieldis only present if the
PADDED flag is set.

E: Asingle-bit flag indicating that the stream dependency is
excl usive (see Section 5.3). This field is only present if the
PRIORITY flag is set.

Stream Dependency: A 31-bit streamidentifier for the streamthat
this stream depends on (see Section 5.3). This field is only
present if the PRRORITY flag is set.

Weight: An unsigned 8-bit integer representing a priority weight for
the stream (see Section 5.3). Add one to the value to obtain a
wei ght between 1 and 256. This field is only present if the
PRIORITY flag is set.

Header Bl ock Fragnent: A header block fragment (Section 4.3).

Paddi ng: Paddi ng octets.

The HEADERS frame defines the follow ng fl ags:

END STREAM (0x1): Wen set, bit 0 indicates that the header bl ock
(Section 4.3) is the last that the endpoint will send for the
identified stream
A HEADERS franme carries the END STREAM fl ag that signals the end
of a stream However, a HEADERS frame with the END STREAM fl ag

set can be foll owed by CONTI NUATION franmes on the sanme stream
Logically, the CONTI NUATION franes are part of the HEADERS frane.

Bel she, et al. St andards Track [Page 33]

RFC 7540 HTTP/ 2 May 2015

END HEADERS (0x4): \When set, bit 2 indicates that this frame
contains an entire header block (Section 4.3) and is not followed
by any CONTI NUATI ON franes.

A HEADERS frame w thout the END HEADERS flag set MJUST be foll owed
by a CONTI NUATION frame for the same stream A receiver MJST
treat the receipt of any other type of frane or a frame on a
different streamas a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

PADDED (0x8): \When set, bit 3 indicates that the Pad Length field
and any padding that it describes are present.

PRI ORI TY (0x20): Wen set, bit 5 indicates that the Exclusive Fl ag
(E), Stream Dependency, and Weight fields are present; see
Section 5. 3.

The payl oad of a HEADERS frane contains a header block fragnent
(Section 4.3). A header block that does not fit within a HEADERS
frame is continued in a CONTI NUATION frame (Section 6.10).

HEADERS frames MJUST be associated with a stream |f a HEADERS frane
is received whose streamidentifier field is 0x0, the recipient MIJST
respond with a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

The HEADERS franme changes the connection state as described in
Section 4. 3.

The HEADERS frane can include padding. Padding fields and flags are
identical to those defined for DATA frames (Section 6.1). Padding
that exceeds the size renmaining for the header block fragnment MJST be
treated as a PROTOCOL_ERROR

Prioritization information in a HEADERS frame is |ogically equival ent
to a separate PRIORITY frane, but inclusion in HEADERS avoi ds the
potential for churn in streamprioritization when new streans are
created. Prioritization fields in HEADERS franes subsequent to the
first on a streamreprioritize the stream (Section 5. 3. 3).

6.3. PRIORITY
The PRIORITY frane (type=0x2) specifies the sender-advised priority

of a stream (Section 5.3). It can be sent in any stream state,
including idle or closed streans.

Bel she, et al. St andards Track [Page 34]

RFC 7540 HTTP/ 2 May 2015

Figure 8 PRIORITY Frane Payl oad
The payl oad of a PRIORITY frane contains the followi ng fields:

E: Asingle-bit flag indicating that the stream dependency is
excl usi ve (see Section 5.3).

Stream Dependency: A 31-bit streamidentifier for the streamthat
this stream depends on (see Section 5.3).

Weight: An unsigned 8-bit integer representing a priority weight for
the stream (see Section 5.3). Add one to the value to obtain a
wei ght between 1 and 256.

The PRIORITY frane does not define any flags.

The PRIORITY frane always identifies a stream |If a PRIORITY frane
is received with a streamidentifier of 0x0, the recipient MJST
respond with a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

The PRIORITY frane can be sent on a streamin any state, though it
cannot be sent between consecutive franmes that conprise a single
header bl ock (Section 4.3). Note that this frame could arrive after
processing or frame sendi ng has conpl eted, which would cause it to
have no effect on the identified stream For a streamthat is in the
"hal f-cl osed (renmote)" or "closed" state, this frame can only affect
processing of the identified streamand its dependent streans; it
does not affect franme transm ssion on that stream

The PRIORITY frame can be sent for a streamin the "idle" or "closed"
state. This allows for the reprioritization of a group of dependent
streanms by altering the priority of an unused or cl osed parent
stream

A PRICRITY frane with a length other than 5 octets MJST be treated as
a streamerror (Section 5.4.2) of type FRAME SI ZE ERROR

Bel she, et al. St andards Track [Page 35]

RFC 7540 HTTP/ 2 May 2015

6.4. RST_STREAM

The RST_STREAM franme (type=0x3) allows for imediate termination of a
stream RST_STREAMis sent to request cancellation of a streamor to
i ndicate that an error condition has occurred.

Fi gure 9: RST_STREAM Frane Payl oad

The RST_STREAM frame contains a single unsigned, 32-bit integer
identifying the error code (Section 7). The error code indicates why
the streamis being term nated.

The RST_STREAM frane does not define any fl ags.

The RST _STREAM frame fully term nates the referenced stream and
causes it to enter the "closed" state. After receiving a RST_STREAM
on a stream the receiver MJIST NOT send additional franes for that
stream wth the exception of PRIORITY. However, after sending the
RST_STREAM the sendi ng endpoi nt MJST be prepared to receive and
process additional frames sent on the streamthat m ght have been
sent by the peer prior to the arrival of the RST_STREAM

RST_STREAM frames MJST be associated with a stream |f a RST_STREAM
frane is received with a streamidentifier of 0x0, the recipient MIST
treat this as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR.

RST_STREAM frames MJUST NOT be sent for a streamin the "idle" state.
If a RST_STREAM frame identifying an idle streamis received, the
reci pient MIUST treat this as a connection error (Section 5.4.1) of
type PROTOCOL_ERRCR.

A RST STREAM frane with a length other than 4 octets MJST be treated
as a connection error (Section 5.4.1) of type FRAME S| ZE ERROR

6.5. SETTINGS

The SETTINGS frane (type=0x4) conveys configuration paraneters that
af fect how endpoi nts communi cate, such as preferences and constraints
on peer behavior. The SETTINGS frane is al so used to acknow edge the
recei pt of those paranmeters. Individually, a SETTINGS paraneter can
al so be referred to as a "setting".

Bel she, et al. St andards Track [Page 36]

RFC 7540 HTTP/ 2 May 2015

SETTI NGS paraneters are not negotiated; they describe characteristics
of the sending peer, which are used by the receiving peer. Different
val ues for the sane paraneter can be advertised by each peer. For
exanple, a client mght set a high initial flow control w ndow,
whereas a server might set a |ower value to conserve resources

A SETTINGS frane MJST be sent by both endpoints at the start of a
connection and MAY be sent at any other tine by either endpoint over
the lifetime of the connection. |nplenmentations MJST support all of
the paraneters defined by this specification

Each paraneter in a SETTINGS frane replaces any existing value for
that paranmeter. Paraneters are processed in the order in which they
appear, and a receiver of a SETTINGS frane does not need to naintain
any state other than the current value of its paraneters. Therefore,
the value of a SETTINGS paraneter is the last value that is seen by a
receiver.

SETTI NGS paraneters are acknow edged by the receiving peer. To
enable this, the SETTINGS frame defines the follow ng flag:

ACK (0x1): Wien set, bit 0 indicates that this frame acknow edges
recei pt and application of the peer’s SETTINGS frane. Wen this
bit is set, the payload of the SETTINGS frane MUST be enpty.
Recei pt of a SETTINGS frane with the ACK flag set and a length
field value other than 0 MIST be treated as a connection error
(Section 5.4.1) of type FRAME_SIZE ERROR. For nore infornmation
see Section 6.5.3 ("Settings Synchronization").

SETTI NGS franes always apply to a connection, never a single stream
The streamidentifier for a SETTINGS frame MJST be zero (0x0). If an
endpoi nt receives a SETTINGS frane whose streamidentifier field is
anyt hi ng other than 0x0, the endpoint MJST respond with a connection
error (Section 5.4.1) of type PROTOCOL_ERROR

The SETTINGS frane affects connection state. A badly forned or
i nconpl ete SETTINGS frane MJUST be treated as a connection error
(Section 5.4.1) of type PROTOCOL_ERROR

A SETTINGS frame with a length other than a multiple of 6 octets MJIST

be treated as a connection error (Section 5.4.1) of type
FRAVE_SI ZE_ERROR

Bel she, et al. St andards Track [Page 37]

RFC 7540 HTTP/ 2 May 2015

6.5.1. SETTINGS For mat

The payl oad of a SETTINGS frane consists of zero or nore paraneters,
each consisting of an unsigned 16-bit setting identifier and an
unsi gned 32-bit val ue.

o e i +

| Identifier (16) |

o e e e e e e +
| Val ue (32)

o m o e e e e o e e e e o eee— oo +

Fi gure 10: Setting Fornat
6.5.2. Defined SETTINGS Paraneters
The followi ng paraneters are defined:

SETTI NGS_HEADER TABLE SI ZE (0x1): Allows the sender to informthe
renot e endpoi nt of the nmaxi num size of the header conpression
tabl e used to decode header blocks, in octets. The encoder can
sel ect any size equal to or less than this value by using
signaling specific to the header conpression format inside a
header bl ock (see [COMWPRESSION]). The initial value is 4,096
octets.

SETTI NGS_ENABLE_PUSH (0x2): This setting can be used to disable
server push (Section 8.2). An endpoint MJST NOT send a
PUSH PROM SE frame if it receives this paraneter set to a value of
0. An endpoint that has both set this paraneter to 0 and had it
acknow edged MJST treat the receipt of a PUSH PROM SE frane as a
connection error (Section 5.4.1) of type PROTOCOL_ERRCR

The initial value is 1, which indicates that server push is
permtted. Any value other than O or 1 MIST be treated as a
connection error (Section 5.4.1) of type PROTOCOL ERROR

SETTI NGS_MAX_CONCURRENT_STREAMS (0x3): I ndicates the nmaxi num nunber
of concurrent streans that the sender will allow. This limt is

directional: it applies to the nunber of streams that the sender
permits the receiver to create. Initially, thereis nolimt to
this value. It is recommended that this value be no smaller than

100, so as to not unnecessarily limt parallelism
A value of 0 for SETTI NGS_MAX_CONCURRENT_STREAMS SHOULD NOT be

treated as special by endpoints. A zero value does prevent the
creation of new streans; however, this can al so happen for any

Bel she, et al. St andards Track [Page 38]

RFC 7540 HTTP/ 2 May 2015

limt that is exhausted with active streans. Servers SHOULD only
set a zero value for short durations; if a server does not wish to
accept requests, closing the connection is nore appropriate.

SETTI NGS I NI TI AL_W NDOW SI ZE (0x4): Indicates the sender’s initia
wi ndow size (in octets) for streamlevel flow control. The
initial value is 2716-1 (65,535) octets.

This setting affects the wi ndow size of all streans (see
Section 6.9.2).

Val ues above the maxi num fl ow control w ndow size of 2731-1 MJUST
be treated as a connection error (Section 5.4.1) of type
FLOW CONTROL_ERROR

SETTI NGS_MAX_FRAME_SI ZE (0x5): Indicates the size of the |argest
frane payload that the sender is willing to receive, in octets.

The initial value is 2714 (16,384) octets. The value advertised
by an endpoi nt MJUST be between this initial value and the maxi num
all oned frame size (27224-1 or 16,777,215 octets), inclusive.

Val ues outside this range MJST be treated as a connection error
(Section 5.4.1) of type PROTCCOL_ERROR

SETTI NGS_MAX HEADER LI ST _SI ZE (0x6): This advisory setting inforns a
peer of the maxi mum size of header list that the sender is
prepared to accept, in octets. The value is based on the
unconpressed size of header fields, including the length of the
nane and value in octets plus an overhead of 32 octets for each
header field.

For any given request, a lower linmt than what is advertised MAY
be enforced. The initial value of this setting is unlimted.

An endpoint that receives a SETTINGS frane w th any unknown or
unsupported identifier MJUST ignore that setting.

6.5.3. Settings Synchronization

Most val ues in SETTINGS benefit fromor require an understandi ng of
when the peer has received and applied the changed paraneter val ues.
In order to provide such synchronization tinepoints, the recipient of
a SETTINGS frane in which the ACK flag is not set MJST apply the
updat ed paraneters as soon as possi bl e upon receipt.

The values in the SETTINGS frame MJST be processed in the order they

appear, with no other frame processing between values. Unsupported
paraneters MJST be ignored. Once all values have been processed, the

Bel she, et al. St andards Track [Page 39]

RFC 7540 HTTP/ 2 May 2015

reci pient MUST i mmediately enit a SETTINGS frane with the ACK flag
set. Upon receiving a SETTINGS frane with the ACK flag set, the
sender of the altered paraneters can rely on the setting having been
appl i ed.

If the sender of a SETTINGS frane does not receive an acknow edgenent
within a reasonabl e anount of tine, it MAY issue a connection error
(Section 5.4.1) of type SETTINGS TI MEQUT.

6.6. PUSH _PROM SE

The PUSH PROM SE frane (type=0x5) is used to notify the peer endpoint
i n advance of streans the sender intends to initiate. The

PUSH PROM SE frane includes the unsigned 31-bit identifier of the
streamthe endpoint plans to create along with a set of headers that
provi de additional context for the stream Section 8.2 contains a

t hor ough description of the use of PUSH PROM SE franes.

oo +

| Pad Length? (8)]

S S o e e e e e oo +
| R Pronmi sed Stream I D (31)

T o e e e e e e e e e e e e e e e e e m o +
| Header Bl ock Fragnent (*)

o m o e e oo +
| Paddi ng (*)

o m m e e e e e oo +

Figure 11: PUSH PROM SE Payl oad For nmat

The PUSH PROM SE frane payl oad has the follow ng fields

Pad Length: An 8-bit field containing the length of the frane
padding in units of octets. This field is only present if the
PADDED flag is set.

R A single reserved bit.

Promi sed Stream I D: An unsigned 31-bit integer that identifies the
streamthat is reserved by the PUSH PROM SE. The prom sed stream
identifier MIST be a valid choice for the next stream sent by the
sender (see "new streamidentifier" in Section 5.1.1).

Header Bl ock Fragnent: A header bl ock fragment (Section 4.3)
cont ai ni ng request header fields.

Paddi ng: Paddi ng octets.

Bel she, et al. St andards Track [Page 40]

RFC 7540 HTTP/ 2 May 2015

The PUSH PROM SE frane defines the follow ng flags:

END_HEADERS (0x4): \When set, bit 2 indicates that this frane
contains an entire header block (Section 4.3) and is not followed
by any CONTI NUATI ON franes.

A PUSH PROM SE frame wi thout the END HEADERS flag set MJST be
foll owed by a CONTI NUATION frame for the same stream A receiver
MUST treat the receipt of any other type of frane or a franme on a
different streamas a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

PADDED (0x8): When set, bit 3 indicates that the Pad Length field
and any padding that it describes are present.

PUSH PROM SE franes MJST only be sent on a peer-initiated streamthat
isin either the "open" or "half-closed (renpte)" state. The stream
identifier of a PUSH PROM SE frane indicates the streamit is
associated with., If the streamidentifier field specifies the value
0x0, a recipient MIST respond with a connection error (Section 5.4.1)
of type PROTOCOL_ERROR

Promi sed streans are not required to be used in the order they are
pronmi sed. The PUSH PROM SE only reserves streamidentifiers for
| ater use.

PUSH_PROM SE MUST NOT be sent if the SETTI NGS_ENABLE_PUSH setting of
the peer endpoint is set to 0. An endpoint that has set this setting
and has received acknow edgenment MJST treat the receipt of a

PUSH PROM SE frane as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

Reci pi ents of PUSH PROM SE frames can choose to reject prom sed
streams by returning a RST_STREAM referencing the prom sed stream
identifier back to the sender of the PUSH PROM SE

A PUSH PROM SE franme nodifies the connection state in two ways.
First, the inclusion of a header block (Section 4.3) potentially
nodi fies the state naintained for header conpression. Second,

PUSH PROM SE al so reserves a streamfor |ater use, causing the

prom sed streamto enter the "reserved" state. A sender MJST NOT
send a PUSH PROM SE on a streamunl ess that streamis either "open"
or "half-closed (renote)"; the sender MJST ensure that the pronised
streamis a valid choice for a new streamidentifier (Section 5.1.1)
(that is, the prom sed stream MIST be in the "idle" state).

Bel she, et al. St andards Track [Page 41]

RFC 7540 HTTP/ 2 May 2015

Since PUSH PROM SE reserves a stream ignoring a PUSH PROM SE frame
causes the streamstate to becone indeterm nate. A receiver MJST
treat the receipt of a PUSH PROM SE on a streamthat is neither

"open" nor "half-closed (local)" as a connection error

(Section 5.4.1) of type PROTOCCOL_ERROR. However, an endpoint that
has sent RST_STREAM on t he associ ated stream MJST handl e PUSH PROM SE
franmes that m ght have been created before the RST_STREAM frane is
recei ved and processed.

A receiver MIST treat the receipt of a PUSH PROM SE that prom ses an
illegal streamidentifier (Section 5.1.1) as a connection error
(Section 5.4.1) of type PROTOCOL_ERROR. Note that an illegal stream
identifier is an identifier for a streamthat is not currently in the
"idle" state.

The PUSH PROM SE frame can include padding. Padding fields and fl ags
are identical to those defined for DATA franes (Section 6.1).

6.7. PING

The PING frame (type=0x6) is a mechanismfor neasuring a mnina
round-trip time fromthe sender, as well as deternining whether an
idle connection is still functional. PING franes can be sent from
any endpoi nt.

Fi gure 12: PI NG Payl oad For mat

In addition to the frame header, PING frames MJST contain 8 octets of
opaque data in the payload. A sender can include any value it
chooses and use those octets in any fashion.

Receivers of a PING frane that does not include an ACK flag MJST send
a PING frane with the ACK flag set in response, with an identica

payl oad. PI NG responses SHOULD be gi ven higher priority than any

ot her frane.

The PING frane defines the foll ow ng flags:
ACK (0x1): \When set, bit O indicates that this PING frame is a PING

response. An endpoint MJST set this flag in PING responses. An
endpoi nt MJUST NOT respond to PING frames containing this flag.

Bel she, et al. St andards Track [Page 42]

RFC 7540 HTTP/ 2 May 2015

PING franes are not associated with any individual stream |[If a PING
frane is received with a streamidentifier field value other than

0x0, the recipient MIST respond with a connection error

(Section 5.4.1) of type PROTOCCO._ERROR

Receipt of a PING frane with a length field value other than 8 MJST
be treated as a connection error (Section 5.4.1) of type
FRAVE_SI ZE_ERRCR.

6.8. GOAWAY

The GOAVAY franme (type=0x7) is used to initiate shutdown of a
connection or to signal serious error conditions. GOAVWAY allows an
endpoint to gracefully stop accepting new streans while stil
finishing processing of previously established streans. This enables
adm nistrative actions, |ike server maintenance.

There is an inherent race condition between an endpoint starting new
streans and the renpte sending a GOAWAY frane. To deal with this
case, the GOAWAY contains the streamidentifier of the |ast peer-
initiated streamthat was or might be processed on the sending
endpoint in this connection. For instance, if the server sends a
GOAVAY frame, the identified streamis the highest-nunbered stream
initiated by the client.

Once sent, the sender will ignore frames sent on streans initiated by
the receiver if the streamhas an identifier higher than the included
| ast streamidentifier. Receivers of a GOAWAY frame MJST NOT open
additional streanms on the connection, although a new connection can
be established for new streans.

If the receiver of the GOAWAY has sent data on streans with a higher
streamidentifier than what is indicated in the GOAWAY frane, those

streanms are not or will not be processed. The receiver of the GOAVWAY
frane can treat the streanms as though they had never been created at
all, thereby allowing those streans to be retried |later on a new

connecti on.

Endpoi nts SHOULD al ways send a GOAWAY frane before closing a
connection so that the renote peer can know whether a stream has been
partially processed or not. For exanple, if an HTTP client sends a
POST at the sanme tinme that a server closes a connection, the client
cannot know if the server started to process that POST request if the
server does not send a GOAWAY frame to indicate what streans it mnight
have acted on.

An endpoi nt m ght choose to close a connection w thout sending a
GOAVWAY for m sbehavi ng peers.

Bel she, et al. St andards Track [Page 43]

RFC 7540 HTTP/ 2 May 2015

A GOAVWAY franme might not i mediately precede closing of the
connection; a receiver of a GOAWAY that has no nore use for the
connection SHOULD still send a GOAWAY frame before terminating the
connecti on.

T +
| R Last-Stream | D (31) |
e +
| Error Code (32)

o mmm emao o +
| Addi tional Debug Data (*)

o e o e oo +

Fi gure 13: GOAWAY Payl oad For nat
The GOAVWAY franme does not define any fl ags.

The GOAVAY frane applies to the connection, not a specific stream
An endpoint MJST treat a GOAVAY frane with a streamidentifier other
than 0x0 as a connection error (Section 5.4.1) of type
PROTOCOL_ERROR

The | ast streamidentifier in the GOAWAY frame contains the highest-
nunbered streamidentifier for which the sender of the GOAWAY frane
m ght have taken sone action on or mght yet take action on. Al
streanms up to and including the identified stream i ght have been
processed in sone way. The last streamidentifier can be set to O if
no streans were processed.

Note: In this context, "processed" neans that some data fromthe
stream was passed to sonme higher layer of software that m ght have
taken sone action as a result.

If a connection term nates wi thout a GOAVWAY franme, the | ast stream
identifier is effectively the highest possible streamidentifier

On streans with | ower- or equal -nunbered identifiers that were not

cl osed conpletely prior to the connection being closed, reattenpting
requests, transactions, or any protocol activity is not possible,
with the exception of idenpotent actions |ike HTTP GET, PUT, or
DELETE. Any protocol activity that uses higher-nunbered streans can
be safely retried using a new connection

Activity on streans nunbered | ower or equal to the |last stream

identifier might still conplete successfully. The sender of a GOAVWAY
franme nmight gracefully shut down a connection by sendi ng a GOAVAY
frame, maintaining the connection in an "open" state until all in-

progress streams conpl ete.

Bel she, et al. St andards Track [Page 44]

RFC 7540 HTTP/ 2 May 2015

An endpoi nt MAY send nul tiple GOAVWAY franes if circunmstances change
For instance, an endpoint that sends GOAWAY with NO ERRCR during
graceful shutdown could subsequently encounter a condition that
requires inmedi ate term nation of the connection. The |ast stream
identifier fromthe | ast GOAWAY franme received indi cates which
streans coul d have been acted upon. Endpoints MJST NOT increase the
value they send in the last streamidentifier, since the peers n ght
al ready have retried unprocessed requests on another connection

A client that is unable to retry requests |loses all requests that are
in flight when the server closes the connection. This is especially
true for internediaries that m ght not be serving clients using
HTTP/ 2. A server that is attenpting to gracefully shut down a
connection SHOULD send an initial GOAWAY frame with the |last stream
identifier set to 2231-1 and a NO ERROR code. This signals to the
client that a shutdown is imrinent and that initiating further
requests is prohibited. After allowing time for any in-flight stream
creation (at least one round-trip tinme), the server can send anot her
GOAVWAY frame with an updated | ast streamidentifier. This ensures
that a connection can be cleanly shut down w thout |osing requests.

After sending a GOAWAY frame, the sender can discard franes for
streanms initiated by the receiver with identifiers higher than the
identified |last stream However, any franes that alter connection
state cannot be conpletely ignored. For instance, HEADERS

PUSH PROM SE, and CONTI NUATI ON franes MJUST be mininally processed to
ensure the state naintai ned for header conpression is consistent (see
Section 4.3); simlarly, DATA frames MJIST be counted toward the
connection flow control wi ndow Failure to process these franes can
cause flow control or header conpression state to becone
unsynchroni zed.

The GOAVAY frane al so contains a 32-bit error code (Section 7) that
contains the reason for closing the connection

Endpoi nts MAY append opaque data to the payl oad of any GOAWAY frane.
Addi tional debug data is intended for diagnostic purposes only and
carries no semantic value. Debug infornmation could contain security-
or privacy-sensitive data. Logged or otherw se persistently stored
debug data MJUST have adequate safeguards to prevent unauthorized
access.

Bel she, et al. St andards Track [Page 45]

RFC 7540 HTTP/ 2 May 2015

6.9. W NDOW UPDATE

The W NDOW UPDATE frane (type=0x8) is used to inplenment flow control;
see Section 5.2 for an overvi ew.

Fl ow control operates at two | evels: on each individual stream and on
the entire connection.

Both types of flow control are hop by hop, that is, only between the
two endpoints. Internediaries do not forward W NDOW UPDATE franes
bet ween dependent connections. However, throttling of data transfer
by any receiver can indirectly cause the propagation of flow control
i nformati on toward the original sender.

Fl ow control only applies to frames that are identified as being
subject to flow control. O the frame types defined in this
docunent, this includes only DATA franes. Franes that are exenpt
fromflow control MJUST be accepted and processed, unless the receiver
is unable to assign resources to handling the frane. A receiver MY
respond with a streamerror (Section 5.4.2) or connection error
(Section 5.4.1) of type FLONCONTROL_ERROR if it is unable to accept

a frane.
T +
| R W ndow Si ze I ncrenent (31)
s +

Fi gure 14: W NDOW UPDATE Payl oad For mat

The payl oad of a W NDOW UPDATE frane is one reserved bit plus an
unsi gned 31-bit integer indicating the nunber of octets that the
sender can transnit in addition to the existing flow control w ndow.
The | egal range for the increnent to the flowcontrol windowis 1 to
2731-1 (2,147,483, 647) octets.

The W NDOW UPDATE frane does not define any flags.

The W NDOW _UPDATE frane can be specific to a streamor to the entire
connection. In the forner case, the frane's streamidentifier
indicates the affected stream in the latter, the value "0" indicates
that the entire connection is the subject of the frane.

A receiver MJST treat the receipt of a WNDOW UPDATE franme with an
fl ow control wi ndow increnent of O as a streamerror (Section 5.4.2)
of type PROTOCOL_ERROR; errors on the connection flow control w ndow
MUST be treated as a connection error (Section 5.4.1).

Bel she, et al. St andards Track [Page 46]

RFC 7540 HTTP/ 2 May 2015

W NDOW UPDATE can be sent by a peer that has sent a frane bearing the
END STREAM flag. This means that a receiver could receive a

W NDOW UPDATE frame on a "half-closed (renote)"” or "closed" stream

A receiver MUST NOT treat this as an error (see Section 5.1).

A receiver that receives a flowcontrolled frane MJST al ways account
for its contribution against the connection flow control w ndow,

unl ess the receiver treats this as a connection error

(Section 5.4.1). This is necessary even if the frane is in error.
The sender counts the frame toward the flow control w ndow, but if
the receiver does not, the fl owcontrol w ndow at the sender and
recei ver can becone different.

A W NDOW UPDATE frame with a |l ength other than 4 octets MJST be
treated as a connection error (Section 5.4.1) of type
FRAVE_SI ZE_ERRCR.

6.9.1. The Flow Control W ndow

Fl ow control in HTTP/2 is inplenented using a w ndow kept by each
sender on every stream The flow control windowis a sinple integer
val ue that indicates how many octets of data the sender is permitted
to transmit; as such, its size is a neasure of the buffering capacity
of the receiver.

Two flow control wi ndows are applicable: the streamflow control

wi ndow and the connection flow control w ndow. The sender MJST NOT
send a flowcontrolled frame with a I ength that exceeds the space
available in either of the flow control w ndows advertised by the
receiver. Franmes with zero length with the END STREAM fl ag set (that
is, an enpty DATA frame) MAY be sent if there is no avail abl e space
in either flowcontrol w ndow.

For flowcontrol calculations, the 9-octet frane header is not
count ed.

After sending a flowcontrolled franme, the sender reduces the space
available in both windows by the Iength of the transnmitted frane.

The receiver of a franme sends a WNDOW UPDATE franme as it consunes
data and frees up space in flow control w ndows. Separate

W NDOW UPDATE franmes are sent for the stream and connection-| evel
fl ow control w ndows.

A sender that receives a W NDOW UPDATE frame updates the
correspondi ng wi ndow by the anmount specified in the frane.

Bel she, et al. St andards Track [Page 47]

RFC 7540 HTTP/ 2 May 2015

A sender MJUST NOT allow a flowcontrol w ndow to exceed 2731-1
octets. |If a sender receives a WNDOW UPDATE t hat causes a fl ow
control window to exceed this maxinmum it MJST ternminate either the
stream or the connection, as appropriate. For streanms, the sender
sends a RST_STREAM with an error code of FLOW CONTROL_ERROR; for the
connection, a GOAWAY frame with an error code of FLOW CONTROL_ERROR
is sent.

Fl owcontrol l ed frames fromthe sender and W NDOW UPDATE franes from
the receiver are conpletely asynchronous with respect to each other.
This property allows a receiver to aggressively update the w ndow
size kept by the sender to prevent streans fromstalling.

6.9.2. Initial Flow Control Wndow Size

When an HTTP/ 2 connection is first established, new streans are
created with an initial flow control w ndow size of 65,535 octets.
The connection flow control wi ndow is also 65,535 octets. Both
endpoi nts can adjust the initial w ndow size for new streans by
including a value for SETTINGS_ I N TI AL_W NDOW SI ZE i n the SETTI NGS
frame that fornms part of the connection preface. The connection
fl ow control w ndow can only be changed usi ng W NDOW UPDATE fr anes.

Prior to receiving a SETTINGS frane that sets a value for

SETTI NGS | NI TI AL_W NDOW SI ZE, an endpoint can only use the default
initial w ndow size when sending flowcontrolled frames. Sinilarly,
the connection flowcontrol windowis set to the default initial

wi ndow si ze until a W NDOW UPDATE franme is received.

In addition to changing the flow control wi ndow for streans that are
not yet active, a SETTINGS frane can alter the initial flow control
wi ndow size for streans with active flowcontrol w ndows (that is,
streams in the "open" or "half-closed (renpte)" state). Wen the

val ue of SETTINGS_ | NI TI AL_W NDOW S| ZE changes, a receiver MJST adj ust
the size of all streamflow control w ndows that it maintains by the
di fference between the new value and the old val ue.

A change to SETTINGS_ | NI TI AL_W NDOW SI ZE can cause the avail abl e
space in a flowcontrol w ndow to becone negative. A sender MJST
track the negative flow control wi ndow and MJUST NOT send new fl ow
controlled franmes until it receives WNDOW UPDATE franes that cause
the flow control w ndow to becone positive.

For exanple, if the client sends 60 KB i nmedi ately on connection

establi shnment and the server sets the initial w ndow size to be 16
KB, the client will recal culate the avail able fl owcontrol w ndow to

Bel she, et al. St andards Track [Page 48]

RFC 7540 HTTP/ 2 May 2015

be -44 KB on receipt of the SETTINGS frame. The client retains a
negative flow control w ndow until W NDOW UPDATE frames restore the
wi ndow to being positive, after which the client can resune sendi ng.

A SETTINGS franme cannot alter the connection flow control w ndow.

An endpoint MJST treat a change to SETTINGS | NI TI AL_W NDOW SI ZE t hat
causes any flow control w ndow to exceed the maxi nrum size as a
connection error (Section 5.4.1) of type FLOW CONTROL_ERROR

6.9.3. Reducing the Stream W ndow Si ze

A receiver that wishes to use a snmaller flowcontrol w ndow than the
current size can send a new SETTINGS frane. However, the receiver
MUST be prepared to receive data that exceeds this w ndow size, since
the sender m ght send data that exceeds the lower limt prior to
processing the SETTINGS frane.

After sending a SETTINGS frane that reduces the initial flow control
wi ndow si ze, a receiver MAY continue to process streans that exceed

flowcontrol limts. Allow ng streans to continue does not allow the
receiver to imedi ately reduce the space it reserves for flow control
wi ndows. Progress on these streans can also stall, since

W NDOW UPDATE frames are needed to allow the sender to resune
sendi ng. The receiver MAY instead send a RST_STREAM wi th an error
code of FLOW CONTROL_ERROR for the affected streans.

6.10. CONTI NUATI ON
The CONTI NUATION franme (type=0x9) is used to continue a sequence of
header bl ock fragnents (Section 4.3). Any nunber of CONTI NUATI ON
franes can be sent, as long as the preceding frame is on the sane

stream and i s a HEADERS, PUSH PROM SE, or CONTI NUATI ON frane without
the END HEADERS fl ag set.

| Header Bl ock Fragnent (*)

Fi gure 15: CONTI NUATI ON Frane Payl oad

The CONTI NUATI ON frane payl oad contai ns a header bl ock fragnent
(Section 4.3).

Bel she, et al. St andards Track [Page 49]

RFC 7540 HTTP/ 2 May 2015

The CONTI NUATI ON frane defines the follow ng flag:

END_HEADERS (0x4): \When set, bit 2 indicates that this frame ends a
header bl ock (Section 4.3).

If the END HEADERS bit is not set, this frane MJST be foll owed by
anot her CONTI NUATION frame. A receiver MJIST treat the receipt of
any other type of frame or a frame on a different streamas a
connection error (Section 5.4.1) of type PROTOCOL_ERRCOR

The CONTI NUATI ON frame changes the connection state as defined in
Section 4. 3.

CONTI NUATI ON franmes MJST be associated with a stream If a

CONTI NUATION franme is received whose streamidentifier field is 0xO,
the recipient MIST respond with a connection error (Section 5.4.1) of
t ype PROTOCOL_ERROR

A CONTI NUATI ON frame MJUST be preceded by a HEADERS, PUSH PROM SE or
CONTI NUATI ON frame without the END HEADERS flag set. A recipient

t hat observes violation of this rule MIST respond with a connection
error (Section 5.4.1) of type PROTOCOL_ERROR

7. Error Codes

Error codes are 32-bit fields that are used in RST_STREAM and GOAWAY
franes to convey the reasons for the stream or connection error.

Error codes share a common code space. Sone error codes apply only
to either streans or the entire connection and have no defi ned
semantics in the other context.

The followi ng error codes are defined:

NO ERROR (0x0): The associated condition is not a result of an
error. For exanple, a GOAVWAY nmight include this code to indicate
graceful shutdown of a connection.

PROTOCOL_ERRCR (0x1): The endpoint detected an unspecific protocol

error. This error is for use when a nore specific error code is
not avail abl e.

| NTERNAL ERRCR (0x2): The endpoi nt encountered an unexpected
internal error.

FLOW CONTROL_ERROR (0x3): The endpoint detected that its peer
viol ated the flow control protocol.

Bel she, et al. St andards Track [Page 50]

RFC 7540 HTTP/ 2 May 2015

SETTI NGS_TI MEQUT (0x4): The endpoint sent a SETTINGS frane but did
not receive a response in a tinmely nmanner. See Section 6.5.3
("Settings Synchronization").

STREAM CLCSED (0x5): The endpoint received a frame after a stream
was hal f - cl osed.

FRAVE S| ZE ERROR (0x6): The endpoint received a frane with an
invalid size

REFUSED STREAM (0x7): The endpoint refused the streamprior to
perform ng any application processing (see Section 8.1.4 for
details).

CANCEL (0x8): Used by the endpoint to indicate that the streamis no
| onger needed.

COVPRESSI ON_ERROR (0x9): The endpoint is unable to nmintain the
header conpression context for the connection

CONNECT_ERROR (0Oxa): The connection established in response to a
CONNECT request (Section 8.3) was reset or abnornally cl osed.

ENHANCE _YOUR CALM (0xb): The endpoint detected that its peer is
exhi biting a behavior that m ght be generating excessive | oad.

| NADEQUATE_SECURI TY (0xc): The underlying transport has properties
that do not meet mininmum security requirenments (see Section 9.2).

HTTP_1 1 REQUI RED (Oxd): The endpoint requires that HITP/ 1.1 be used
i nstead of HITP/ 2.

Unknown or unsupported error codes MJST NOT trigger any speci al
behavior. These MAY be treated by an inplenentation as being
equi val ent to | NTERNAL_ERROR

8. HITP Message Exchanges

HTTP/ 2 is intended to be as conpatible as possible with current uses
of HTTP. This nmeans that, fromthe application perspective, the
features of the protocol are |argely unchanged. To achieve this, al
request and response senantics are preserved, although the syntax of
conveyi ng those semanti cs has changed.

Thus, the specification and requirenments of HITP/ 1.1 Semantics and
Content [RFC7231], Conditional Requests [RFC7232], Range Requests

[RFC7233], Caching [RFC7234], and Authentication [RFC7/235] are
applicable to HTTP/ 2. Selected portions of HITP/ 1.1 Message Syntax

Bel she, et al. St andards Track [Page 51]

RFC 7540 HTTP/ 2 May 2015

and Routing [RFC7230], such as the HTTP and HTTPS URI schenes, are
al so applicable in HTTP/ 2, but the expression of those semantics for
this protocol are defined in the sections bel ow

8.1. HITP Request/Response Exchange

A client sends an HTTP request on a new stream using a previously
unused streamidentifier (Section 5.1.1). A server sends an HITP
response on the same stream as the request.

An HTTP nessage (request or response) consists of:

1. for a response only, zero or nore HEADERS franes (each foll owed
by zero or nore CONTI NUATI ON franmes) containing the nessage
headers of informational (1xx) HITP responses (see [RFC7230],
Section 3.2 and [RFC7231], Section 6.2),

2. one HEADERS frane (followed by zero or nore CONTI NUATI ON franes)
contai ning the nmessage headers (see [RFC7230], Section 3.2),

3. zero or nore DATA franes containing the payl oad body (see
[RFC7230], Section 3.3), and

4. optionally, one HEADERS franme, foll owed by zero or nore
CONTI NUATI ON frames containing the trailer-part, if present (see
[RFC7230], Section 4.1.2).

The last frame in the sequence bears an END STREAM fl ag, noting that
a HEADERS franme bearing the END STREAM fl ag can be foll owed by

CONTI NUATION franmes that carry any remaining portions of the header
bl ock.

O her franes (fromany streanm) MJST NOT occur between the HEADERS
franme and any CONTI NUATION frames that mght foll ow

HTTP/ 2 uses DATA franmes to carry nessage payl oads. The "chunked"
transfer encoding defined in Section 4.1 of [RFC7230] MJST NOT be
used in HITP/ 2.

Trailing header fields are carried in a header block that also
term nates the stream Such a header block is a sequence starting
with a HEADERS frane, followed by zero or nore CONTI NUATI ON franes,
where t he HEADERS frane bears an END STREAM fl ag. Header bl ocks
after the first that do not terninate the streamare not part of an
HTTP request or response.

Bel she, et al. St andards Track [Page 52]

RFC 7540 HTTP/ 2 May 2015

A HEADERS franme (and associ ated CONTI NUATI ON franes) can only appear
at the start or end of a stream An endpoint that receives a HEADERS
frame wi thout the END _STREAM fl ag set after receiving a final (non-

i nformational) status code MJST treat the correspondi ng request or
response as nmal fornmed (Section 8.1.2.6).

An HTTP request/response exchange fully consunes a single stream A
request starts with the HEADERS frane that puts the streaminto an
"open" state. The request ends with a frane beari ng END_STREAM

whi ch causes the streamto becone "half-closed (local)" for the
client and "half-closed (renote)" for the server. A response starts
with a HEADERS frane and ends with a frame bearing END STREAM which
pl aces the streamin the "cl osed" state.

An HTTP response is conplete after the server sends -- or the client
receives -- a frame with the END STREAM fl ag set (i ncluding any

CONTI NUATI ON franmes needed to conplete a header bl ock). A server can
send a conpl ete response prior to the client sending an entire
request if the response does not depend on any portion of the request
that has not been sent and received. Wen this is true, a server MAY
request that the client abort transmi ssion of a request w thout error
by sending a RST_STREAM with an error code of NO ERROR after sending
a conplete response (i.e., a frane with the END STREAM fl ag) .

Aients MJUST NOT discard responses as a result of receiving such a
RST_STREAM though clients can always di scard responses at their

di scretion for other reasons.

8.1.1. Upgrading from HTTP/ 2

HTTP/ 2 renoves support for the 101 (Switching Protocols)
i nformati onal status code ([RFC7231], Section 6.2.2).

The senmantics of 101 (Switching Protocols) aren’t applicable to a
mul ti pl exed protocol. Alternative protocols are able to use the sane
mechani sms that HTTP/ 2 uses to negotiate their use (see Section 3).

8.1.2. HITP Header Fields

HTTP header fields carry information as a series of key-val ue pairs.
For a listing of registered HTTP headers, see the "Message Header
Field" registry maintained at <https://ww.iana. org/assi gnments/
message- header s>.

Just as in HITP/1.x, header field names are strings of ASCl
characters that are conpared in a case-insensitive fashion. However,
header field nanes MJST be converted to | owercase prior to their
encoding in HITP/ 2. A request or response containi ng uppercase
header field nanes MJST be treated as mal fornmed (Section 8.1.2.6).

Bel she, et al. St andards Track [Page 53]

RFC 7540 HTTP/ 2 May 2015

8.1.2.1. Pseudo- Header Fields

While HTTP/ 1. x used the nessage start-line (see [RFC7230],

Section 3.1) to convey the target URI, the nethod of the request, and
the status code for the response, HITP/ 2 uses special pseudo-header
fields beginning with ':’ character (ASCI|I 0x3a) for this purpose.

Pseudo- header fields are not HTTP header fields. Endpoints MJST NOT
gener at e pseudo-header fields other than those defined in this
docunent .

Pseudo- header fields are only valid in the context in which they are
defined. Pseudo-header fields defined for requests MJST NOT appear

i n responses; pseudo-header fields defined for responses MJUST NOT
appear in requests. Pseudo-header fields MJST NOT appear in
trailers. Endpoints MIST treat a request or response that contains
undefined or invalid pseudo-header fields as nal forned

(Section 8.1.2.6).

Al'l pseudo- header fields MJST appear in the header bl ock before
regul ar header fields. Any request or response that contains a
pseudo- header field that appears in a header block after a regul ar
header field MIST be treated as nal forned (Section 8.1.2.6).

8.1.2.2. Connection-Specific Header Fields

HTTP/ 2 does not use the Connection header field to indicate
connection-specific header fields; in this protocol, connection-
specific netadata is conveyed by other nmeans. An endpoint MJST NOT
generate an HITP/ 2 nessage contai ni ng connection-specific header
fields; any nessage containi ng connection-specific header fields MJST
be treated as mal formed (Section 8.1.2.6).

The only exception to this is the TE header field, which MAY be
present in an HTTP/ 2 request; when it is, it MJST NOT contain any
val ue other than "trailers”

This means that an internediary transforning an HITP/ 1. x nessage to
HTTP/ 2 will need to renove any header fields noninated by the
Connecti on header field, along with the Connection header field
itself. Such internediaries SHOULD al so renove ot her connecti on-
specific header fields, such as Keep-Alive, Proxy-Connection
Transf er - Encodi ng, and Upgrade, even if they are not nom nated by the
Connecti on header field.

Note: HTTP/ 2 purposefully does not support upgrade to another

protocol. The handshake nethods described in Section 3 are
bel i eved sufficient to negotiate the use of alternative protocols.

Bel she, et al. St andards Track [Page 54]

RFC 7540 HTTP/ 2 May 2015

8.1.2.3. Request Pseudo- Header Fields

The foll owi ng pseudo- header fields are defined for HTTP/ 2 requests:

(o]

The ": nethod" pseudo-header field includes the HTTP net hod
([RFC7231], Section 4).

The ":schenme" pseudo-header field includes the schenme portion of
the target URI ([RFC3986], Section 3.1).

":schene" is not restricted to "http" and "https" schemed URIs. A
proxy or gateway can translate requests for non-HTTP schenes,
enabling the use of HITP to interact with non-HITP services.

The ":authority" pseudo-header field includes the authority
portion of the target URI ([RFC3986], Section 3.2). The authority
MUST NOT include the deprecated "userinfo" subconponent for "http"
or "https" schenmed URIs.

To ensure that the HITP/ 1.1 request line can be reproduced
accurately, this pseudo-header field MJST be onitted when
translating froman HTTP/ 1.1 request that has a request target in
origin or asterisk form(see [RFCr230], Section 5.3). dients
that generate HITP/ 2 requests directly SHOULD use the ":authority"
pseudo- header field instead of the Host header field. An
intermediary that converts an HTTP/ 2 request to HTTP/ 1.1 MJST
create a Host header field if one is not present in a request by
copyi ng the value of the ":authority" pseudo-header field.

The ": path" pseudo-header field includes the path and query parts
of the target URI (the "path-absolute" production and optionally a
'?" character followed by the "query" production (see Sections 3.3
and 3.4 of [RFC3986]). A request in asterisk formincludes the
value '*’ for the ":path" pseudo-header field.

Thi s pseudo-header field MJUST NOT be enpty for "http" or "https"
URIs; "http" or "https" URIs that do not contain a path conponent
MUST include a value of '/'. The exception to this rule is an
OPTI ONS request for an "http" or "https" URl that does not include
a path conponent; these MJST include a ":path" pseudo-header field
with a value of '*' (see [RFC7230], Section 5.3.4).

Bel she, et al. St andards Track [Page 55]

RFC 7540 HTTP/ 2 May 2015

Al'l HTTP/ 2 requests MJST include exactly one valid value for the
":method", ":schene", and ":path" pseudo-header fields, unless it is
a CONNECT request (Section 8.3). An HITP request that onits

mandat ory pseudo- header fields is malformed (Section 8.1.2.6).

HTTP/ 2 does not define a way to carry the version identifier that is
included in the HTTP/ 1.1 request line.

8.1.2.4. Response Pseudo- Header Fields
For HTTP/ 2 responses, a single ":status" pseudo-header field is
defined that carries the HITP status code field (see [RFC7231],
Section 6). This pseudo-header field MJUST be included in all
responses; otherw se, the response is nmalformed (