Net wor k Wor ki ng Group S. Shepl er
Request for Comments: 3530 B. Cal | aghan
bsol etes: 3010 D. Robi nson
Cat egory: Standards Track R Thurl ow

Sun M crosystens, |nc.
C. Beane

Hurmi ngbi rd Ltd.

M Eisler

D. Noveck

Net wor k Appliance, Inc.
April 2003

Network File System (NFS) version 4 Protocol

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zation state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice

Copyright (C The Internet Society (2003). Al Rights Reserved.

Abst r act

The Network File System (NFS) version 4 is a distributed fil esystem
prot ocol which owes heritage to NFS protocol version 2, RFC 1094, and
version 3, RFC 1813. Unlike earlier versions, the NFS version 4
protocol supports traditional file access while integrating support
for file locking and the nount protocol. In addition, support for
strong security (and its negotiation), conpound operations, client
caching, and internationalization have been added. O course,

attention has been applied to naking NFS version 4 operate well in an
I nt ernet environnent.

Thi s docunent replaces RFC 3010 as the definition of the NFS version
4 protocol.

Key Words

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Shepler, et al. St andards Track [Page 1]

RFC 3530 NFS version 4 Protocol April 2003

Tabl e of Contents

1. I ntroduction . . . 8
1.1. Changes since RFC 3010 . 8
1.2. NFS version 4 Goals. . . 9
1.3 I nconsi stencies of this Ebcunent mtth Sectlon 18 . 9
1.4 Overvi ew of NFS version 4 Features 10
1.4.1. RPC and Security . . Coe e 10
1.4.2. Procedure and Cperatlon Structure Coe e 10
1.4.3. Filesystem Mde. . . G e e 11
1.4.3.1. Filehandle Types G e 11
1.4.3.2 Attribute Types. . . . Coe 12

1.4.3.3. Filesystem Replication and
Mgration. 13
1.4.4. OPEN and CLCSE 13
1.4.5 File locking . . . G 13
1.4.6. dient Caching and Delegatlon G 13
1.5. Ceneral Definitions. . . Ce e e 14
2. Protocol Data Types. 16
2.1. Basic Data Typeso 16
2.2. Structured Data Types. 18
3. RPC and Security Flavor. 23
3.1. Ports and Transports . . . e e 23
3.1.1. dient RetransntsS|on BehaV|or G e e 24
3.2. Security Flavors . . . e e e e 25
3.2.1. Security nechanlsns for NFS version 4. . . . 25
3.2.1.1. Kerberos V5 as a security triple . 25
3.2.1.2. LIPKEY as a security triple. . . . 26
3.2.1.3. SPKM3 as a securlty tr|ple S 27
3.3. Security Negotiationo 27
3.3.1. SECINFO.o 28
3.3.2. Security Error 28
3.4. Callback RPC Authentication. 28
4. Filehandles . . . G e e e 30
4.1. (Obtaining the Flrst Fllehandle G e e e 30
4.1.1. Root Filehandle. 31
4.1.2 Public Filehandle. 31
4.2. Filehandle Types 31
4.2.1. Ceneral Properties of a Filehandle 32
4.2.2. Persistent Filehandle. 32
4.2.3 Volatile Filehandle. . . . G e 33

4.2. 4 One Met hod of Constructing a

Vol atile Filehandle. . . . G 34
4.3. Cdient Recovery fromFilehandl e Explratlon Coe e 35
5. File Attributes. . . C e e e 35
5.1. Mandatory Attrlbutes C e e e e 37
5.2. Recommended Attributes o . . L L. 37
5.3. Nanmed Attributes 37

Shepler, et al. St andards Track [Page 2]

RFC 3530 NFS version 4 Protocol

Classification of Attributes
Mandatory Attributes - Definitions .
Recomended Attributes - Definitions
Ti me Access. .

I nterpreting omner and omner group
Character Case Attributes.

Quota Attributes

Access Control Lists

.11, ACE type . . .

11. ACE Access Nhsk

.11, ACE flag .

L11. ACE who . . .

11. Mode Attrlbute. .o .

11. Mode and ACL Attri bute .
L1171, mount ed_on_fil ei d.

esystem M gratlon and Repllcatlon

.1. Replication.

.2. Magration.
. 3.
4.

ororor o1 o1 o1 o1 o1
PR O®~No U A
mor

U1 01 U1 U1 U1 01 0

NoOUAWNE

o
-

Interpretation of the fs Iocatlons Attrlbute

(2Nl Ry

~
e
S

S Server Nane Space

Server Exports

Br owsi ng Exports . .

Server Pseudo F|Iesystew

Mul tiple Roots . .

Fi | ehandl e Volatlllty

Exported Root. . .

Mount Point Crossing .

Security Policy and Nane Space Presentatlon
e Locki ng and Share Reservati ons.

Locki ng.
1

OINNNNNNNN
PN RWNE

dient ID .
Server Rel ease of O |ent|d . .

| ock_owner and stateid Ebflnltlon
Use of the stateid and Locki ng .
Sequenci ng of Lock Requests.
Recovery from Repl ayed Requests.
Rel easing | ock_owner State
weonEnOmﬂrmUon.

Lock Ranges . .

Upgr adi ng and Downgradlng Locks

Bl ocki ng Locks . . .o

Lease Renewal .

Crash Recovery . .

8.6.1. dient Fallure and Recovery

8.6.2. Server Failure and Recovery. .
8.6. 3. Net work Partitions and Recovery.
8.7. Recovery from a Lock Request Tineout or Abort

® 0 00 00 @ 0 0
PRPReE
DN B WNE

@ 0 0 00 o
o UThWN

Shepler, et al. St andards Track

Fi | ehandl e Recovery for M gration or Replication

April 2003

38
39
41
46
47
49
49
50
51
52
54
55
56
57
57
58
58
59
60
61
61
61
62
62
63
63
63
63
64
65
65
66
69
69
71
73
74
74
75
76
76
77
77
78
79
79
81
85

[Page 3]

RFC 3530

©
Q

10.
11.

Shepl er,

© % 00
B ©

12.
. 13.

® @ 0

9. 1.
9. 2.

9. 3.

et al.

NFS version 4 Protocol April 2003

Server Revocation of Locks.

Share Reservations. .

OPEN CLOSE Operations . . .

8.10.1. dose and Retention of St ate
Information. . .

Open Upgrade and Dovvngrade

Short and Long Leases .

O ocks, Propagation Delay, and Cal cul ati ng Lease

Expi rati on.

M gration, Replication and State.

8.14.1. Mgration and State.

8.14.2. Replication and State.

8.14.3. Notification of Mgrated Lease . . .

8.14.4. Mgration and the Lease_tine Attrlbute.

i ent-Side Caching .

Per f or mance Chal I enges for CI i ent Sl de Cachl ng

Del egati on and Cal | backs.

9.2.1. Delegation Recovery .

Data Caching. . . .

.1 Dat a Cachl ng and (PENS .o

.2 Dat a Caching and File Locki ng .

. 3. Data Cachi ng and Mandatory File LOCkI ng

.4 Data Caching and File ldentity . -

nDeIegatlon. . .

Open Del egatl on and Data Cachl ng .

Open Del egation and File Locks .

Handl i ng of CB_CETATTR . .

Recal | of Open Del egati on.

Cients that Fail to Honor

Del egation Recalls .

.4.6. Del egati on Revocati on.

Data Cachi ng and Revocation . .

9.5. 1. Revocati on Recovery for W| te QDen
Del egation . G

Attribute Caching .

©oooogooow©
PRRAPAPOIOWO®

ghwNE

©

Data and Met adata Cach| ng and I\/brrory I\/apped F| I es

Nane Cachi ng .
Di rect ory Caching .

or Versioning . .
ernationalization .

Stringprep proflle for the uthStr cs type
11.1.1. Intended applicability of “the

nfs4 cs _prep profile . .
Character repertoire of nfs4 cs prep .
Mappi ng used by nfs4 _cs_prep . .
Nor mal i zati on used by nfs4_cs_prep .
Prohi bited output for nfs4_cs_prep .
Bi di rectional output for nfs4 _cs _prep.

11.
11.
11.
11.
11.

il
ouhwN

St andards Track

85
86
87

88
88
89

89
90
90
91
92
92
93
93
94
96
98
98
99
101
101
102
104
106
106
109

111
112
112

113
113
115
118
119
120
122
123

123
124
124
124
125
125

[Page 4]

RFC 3530

12.
13.

14.

Shepl er,

NFS version 4 Protocol Ap

11.2. Stringprep profile for the utf8str _cis type .
11.2.1. Intended applicability of “the
nfs4 cis_prep profile.

11. Char act er repertoire of nf s4 cis prep
11. Mappi ng used by nfs4 cis_prep

11. Nor mal i zati on used by nfsd4 cis prep
11. Prohi bited output for nfs4 cis _prep

11.
11.3. Stri
11.

Bi di rectional output for nfs4 cis_prep .
prep profile for the utf8str_nixed type .

I ntended applicability of “the

nfs4_m xed_prep profile.

.“"_!\’!\’!\’!\’!\J
!—‘QmSJ’PP"!\’

11.3.2 Char act er repertoire of nfs4_ mxed prep

11. 3.3 Mappi ng used by nfs4 cis _brep .

11.3. 4 Nor nal i zati on used by nfs4 ni xed_pr ep

11.3.5 Prohi bi ted out put for nf s4_m xed_prep
3. 6.

11.
11.4. UTF-8 Rel ated Errors.
Error Definitions
NFS version 4 Requests .
13.1. Conpound Procedure. .
13.2. Evaluation of a Oorrpound Request
13.3. Synchronous Modi fyi ng Cper ations.
13. 4. Operatr on Val ues. . .
NFS version 4 Procedures . .
14.1. Procedure 0: NULL - No Operatr on . .
14.2. Procedure 1. COVWPOUND - Conpound Operatl ons .
14. 2. 1. Operation 3: ACCESS - Check Access
Rights.
14. 2. 2. Operation 4: CLOSE - Close File .
14. 2. 3. Qperation 5: COM T - Commit
Cached Data
14. 2. 4. Operation 6: CREATE - Create a
Non- Regul ar Fil e Object
14. 2. 5. Operation 7: DELEGPURGE -
Purge Del egations Awaiting Recovery .
14. 2. 6. Qperation 8: DELEGRETURN - Return
Del egati on.

14.2. 7. OQperation 9: GETATTR - Get Attributes .
14. 2. 8. Operation 10: GETFH - Get Current

Fi | ehandl e.
14.2.9. Operation 11: LINK - Create Link to a

File.
14.2.10. Operation 12: LOCK - Create Lock
14.2.11. COperation 13: LOCKT - Test For Lock .
14.2.12. Operation 14: LOCKU - Unlock File . . .
14.2.13. Operation 15: LOOKUP - Lookup Fil enane.
14.2.14. Operation 16: LOOKUPP - Lookup

Parent Directory. .o

et al. St andards Track

Bi di rectional output for nfs4_m xed_prep

ril 2003

125

125
125
125
125
126
126
126

126
126
126
127
127
127
127
128
134
134
135
136
136
136
136
137

140
142

144
147
150

151
152

153
154
156
160
162
163

165

[Page 5]

RFC 3530

15.

Shepl er,

15. 1.
15. 2.

NFS version 4 Protocol

April 2003

14.2.15. Operation 17: NVERI FY - Verify
Difference in Attributes . . 166
14.2.16. Operation 18: OPEN - QDen a Regul ar
File. . 168
14.2.17. Operation 19 (PENATTR - Open Namad
Attribute Directory . . .o 178
14.2.18. Operation 20: OPEN_CONFI RM -
Confirm Qpen . . 180
14.2.19. Operation 21: OPEN DO/\NGRADE -
Reduce Open File Access . 182
14.2.20. Operation 22: PUTFH - Set
Current Filehandle. . . 184
14.2.21. Operation 23: PUTPUBFH -
Set Public Filehandle . . 185
14.2.22. QOperation 24: PUTROOTFH -
Set Root Filehandle 186
14.2.23. Operation 25: READ - Read fromFile . 187
14.2.24. Operation 26: READDI R -
Read Directory. . . 190
14.2.25. Operation 27: READLI NK -
Read Synmbolic Link. . . 193
14.2.26. Operation 28: REMOVE -
Renmove Fil esystem (bj ect. 195
14.2.27. Operation 29: RENAME -
Renane Directory Entry. . 197
14.2.28. (Operation 30: RENEW - Renew a Lease . 200
14.2.29. Operation 31: RESTOREFH -
Restore Saved Fil ehandle. . 201
14.2.30. Operation 32: SAVEFH - Save
Current Filehandle. . . . 202
14.2.31. Operation 33: SECI NFO - Oot a| n
Avail abl e Security. 203
14.2.32. Operation 34: SETATTR - Set Attributes. . 206
14.2.33. Operation 35: SETCLIENTID -
Negotiate Clientid. . . 209
14.2.34. Operation 36: SETCLI ENTI D CC)\IFI RM -
Confirmdientid. . . . G 213
14.2.35. Operation 37: VERI FY -
Verify Sanme Attributes. . . . 217
14.2.36. Operation 38: WRI TE - Wlteto F|Ie . 218
14.2.37. Operation 39: RELEASE_LOCKOMER -
Rel ease Lockowner State . . . 223
14.2.38. Operation 10044: |LLEGAL -
Il egal operation . .o 224
NFS version 4 Call back Procedures . . 225
Procedure 0: CB_NULL - No Cperatl on . 225
Procedure 1: CB_COWPOUND - Conpound
Qper ati ons. . e 226
St andards Track [Page 6]

et al.

RFC 3530

16.
17.

18.
19.
20.

22.

23.

Shepl er,

NFS version 4 Protocol

15.2.1. Operation 3: CB GETATTR - GCet

Attributes . .
15.2.2. Qperation 4: CB RECALL -
Recall an Open Del egati on.

15.2.3. Qperation 10044: CB |LLEGAL -

Il1legal Callback Operation .
Security Considerations Ce
| ANA Consi derations . .

17.1. Naned Attribute Defl n|t| on. . .
17.2. ONC RPC Network ldentifiers (netlds)
RPC definition file

Acknowl edgenents .

Nor mat i ve References .

Informati ve References .

Aut hors’ Information . .

22.1. Editor’s Address. .

22.2. Authors’ Addresses.

Ful | Copyright Statenent

et al. St andards Track

April 2003

228
229

230
231
232
232
232
234
268
268
270
273
273
274
275

[Page 7]

RFC 3530 NFS version 4 Protocol April 2003

1. Introduction
1.1. Changes since RFC 3010

This definition of the NFS version 4 protocol replaces or obsol etes
the definition present in [RFC3010]. Wile portions of the two
docunents have renai ned the sane, there have been substantive changes
in others. The changes nade between [RFC3010] and this docunent
represent inplenentation experience and further review of the
protocol. Wile sonme nodifications were nade for ease of

i npl ementation or clarification, nost updates represent errors or
situations where the [RFC3010] definition were untenable.

The following list is not all inclusive of all changes but presents
sonme of the nobst notabl e changes or additions nade:

o0 The state nodel has added an open_owner4 identifier. This was
done to acconmodat e Posi x based clients and the nodel they use for
file locking. For Posix clients, an open_owner4 would correspond
to a file descriptor potentially shared anongst a set of processes
and the |l ock_owner4 identifier would correspond to a process that
is locking a file.

o Cdarifications and error conditions were added for the handling of
the owner and group attributes. Since these attributes are string
based (as opposed to the nuneric uid/gid of previous versions of
NFS), translations may not be avail abl e and hence t he changes
made.

o Cdarifications for the ACL and node attri butes to address
eval uation and partial support.

o For identifiers that are defined as XDR opaque, linmts were set on
their size.

0 Added the nounted on filed attribute to allow Posix clients to
correctly construct |ocal nounts.

0 Mdified the SETCLI ENTI DY SETCLI ENTI D_CONFI RM oper ations to dea
correctly with confirmation details along with adding the ability
to specify new client callback information. Al so added
clarification of the callback information itself.

0 Added a new operati on LOCKOANER_RELEASE to enable notifying the
server that a |ock_owner4 will no |onger be used by the client.

0 RENEW operation changes to identify the client correctly and all ow
for additional error returns.

Shepler, et al. St andards Track [Page 8]

RFC 3530 NFS version 4 Protocol April 2003

o Verify error return possibilities for all operations.

0 Renove use of the pathnaned4 data type from LOOKUP and OPEN in
favor of having the client construct a sequence of LOOKUP
operations to achieive the sane effect.

o Carification of the internationalization issues and adoption of
the new stringprep profile franmework.

1. 2. NFS Version 4 Goal s

The NFS version 4 protocol is a further revision of the NFS protoco
defined already by versions 2 [RFC1094] and 3 [RFC1813]. It retains
the essential characteristics of previous versions: design for easy
recovery, independent of transport protocols, operating systems and
filesystenms, sinplicity, and good performance. The NFS version 4
revi sion has the foll ow ng goal s:

o |Inproved access and good perfornmance on the |nternet.
The protocol is designed to transit firewalls easily, perform well
where latency is high and bandwidth is |low, and scale to very
| arge nunbers of clients per server

0 Strong security with negotiation built into the protocol
The protocol builds on the work of the ONCRPC working group in
supporting the RPCSEC GSS protocol. Additionally, the NFS version
4 protocol provides a nmechanismto allow clients and servers the
ability to negotiate security and require clients and servers to
support a mininmal set of security schenes.

0 Good cross-platforminteroperability.
The protocol features a filesystem nodel that provides a useful
common set of features that does not unduly favor one fil esystem
or operating system over another

0 Designed for protocol extensions.

The protocol is designed to accept standard extensions that do not
conprom se backward conpatibility.

1.3. Inconsistencies of this Docunent with Section 18
Section 18, RPC Definition File, contains the definitions in XDR

description | anguage of the constructs used by the protocol. Prior
to Section 18, several of the constructs are reproduced for purposes

Shepler, et al. St andards Track [Page 9]

RFC 3530 NFS version 4 Protocol April 2003

of explanation. The reader is warned of the possibility of errors in
t he reproduced constructs outside of Section 18. For any part of the
docunent that is inconsistent with Section 18, Section 18 is to be
considered authoritative.

1.4. Overview of NFS version 4 Features

To provide a reasonable context for the reader, the major features of
NFS version 4 protocol will be reviewed in brief. This will be done
to provide an appropriate context for both the reader who is fanmliar
with the previous versions of the NFS protocol and the reader that is
new to the NFS protocols. For the reader new to the NFS protocols,
there is still a fundanental knowl edge that is expected. The reader
shoul d be famliar with the XDR and RPC protocols as described in

[RFC1831] and [RFC1832]. A basic know edge of filesystens and
distributed filesystens is expected as well

1.4.1. RPC and Security

As with previous versions of NFS, the External Data Representation
(XDR) and Renote Procedure Call (RPC) mechani snms used for the NFS
version 4 protocol are those defined in [RFC1831] and [RFC1832]. To
meet end to end security requirenents, the RPCSEC GSS franework

[RFC2203] will be used to extend the basic RPC security. Wth the
use of RPCSEC GSS, various mechani snms can be provided to offer

aut hentication, integrity, and privacy to the NFS version 4 protocol
Kerberos V5 will be used as described in [RFC1964] to provide one
security framework. The LIPKEY GSS- APl nechani sm described in

[RFC2847] will be used to provide for the use of user password and
server public key by the NFS version 4 protocol. Wth the use of
RPCSEC GSS, ot her nechani sns nay al so be specified and used for NFS
version 4 security.

To enabl e in-band security negotiation, the NFS version 4 protoco
has added a new operation which provides the client a nethod of
querying the server about its policies regardi ng which security
mechani snms nust be used for access to the server’s fil esystem
resources. Wth this, the client can securely nmatch the security
mechani smthat neets the policies specified at both the client and
server.

1.4.2. Procedure and Operation Structure

A significant departure fromthe previous versions of the NFS
protocol is the introduction of the COMPOUND procedure. For the NFS
version 4 protocol, there are two RPC procedures, NULL and COVPOUND
The COVPOUND procedure is defined in terns of operations and these
operations correspond nore closely to the traditional NFS procedures.

Shepler, et al. St andards Track [Page 10]

RFC 3530 NFS version 4 Protocol April 2003

Wth the use of the COVPOUND procedure, the client is able to build
simpl e or conplex requests. These COVWOUND requests allow for a
reduction in the nunber of RPCs needed for logical filesystem
operations. For exanple, w thout previous contact with a server a
client will be able to read data froma file in one request by
conbi ni ng LOOKUP, OPEN, and READ operations in a single COVOUND RPC
Wth previous versions of the NFS protocol, this type of single
request was not possible.

The nodel used for COMWPOUND is very sinple. There is no logical OR
or ANDi ng of operations. The operations conbined within a COVPOUND
request are evaluated in order by the server. Once an operation
returns a failing result, the evaluation ends and the results of al
eval uated operations are returned to the client.

The NFS version 4 protocol continues to have the client refer to a
file or directory at the server by a "filehandl e". The COVPOUND
procedure has a nethod of passing a filehandle fromone operation to
another within the sequence of operations. There is a concept of a
"current filehandl e" and "saved fil ehandl e". Mst operations use the
"current filehandl e" as the filesystem object to operate upon. The
"saved filehandle" is used as tenporary filehandl e storage within a
COVPOUND procedure as well as an additional operand for certain
operations.

1.4.3. Filesystem Mdel

The general filesystem nodel used for the NFS version 4 protocol is
the sane as previous versions. The server filesystemis hierarchica
with the regular files contained within being treated as opaque byte
streans. In a slight departure, file and directory nanmes are encoded
with UTF-8 to deal with the basics of internationalization

The NFS version 4 protocol does not require a separate protocol to
provide for the initial mapping between path nanme and fil ehandl e.

I nstead of using the ol der MOUNT protocol for this nmapping, the
server provides a ROOT filehandl e that represents the | ogical root or
top of the filesystemtree provided by the server. The server
provides multiple filesystens by gluing themtogether with pseudo
filesystenms. These pseudo filesystens provide for potential gaps in
the path nanes between real filesystens.

1.4.3.1. Filehandle Types
In previous versions of the NFS protocol, the fil ehandl e provi ded by
the server was guaranteed to be valid or persistent for the lifetine

of the filesystemobject to which it referred. For some server
i npl enentations, this persistence requirenent has been difficult to

Shepler, et al. St andards Track [Page 11]

RFC 3530 NFS version 4 Protocol April 2003

nmeet. For the NFS version 4 protocol, this requirement has been
rel axed by introduci ng another type of filehandle, volatile. Wth
persistent and volatile filehandl e types, the server inplenentation
can match the abilities of the filesystemat the server along with
the operating environnent. The client will have know edge of the
type of filehandl e being provided by the server and can be prepared
to deal with the semantics of each

1.4.3.2. Attribute Types

The NFS version 4 protocol introduces three classes of filesystem or
file attributes. Like the additional filehandle type, the
classification of file attributes has been done to ease server

i mpl enentations along with extending the overall functionality of the
NFS protocol. This attribute nodel is structured to be extensible
such that new attributes can be introduced in mnor revisions of the
protocol without requiring significant rework.

The three classifications are: mandatory, recommended and naned
attributes. This is a significant departure fromthe previous

attribute nmodel used in the NFS protocol. Previously, the attributes
for the filesystemand file objects were a fixed set of mainly UN X
attributes. |If the server or client did not support a particular

attribute, it would have to sinulate the attribute the best it coul d.

Mandatory attributes are the nminimal set of file or filesystem
attributes that nust be provided by the server and nust be properly
represented by the server. Recomended attributes represent
different filesystemtypes and operating environnents. The
recomended attributes will allow for better interoperability and the
i nclusion of nore operating environnments. The mandatory and
reconmended attribute sets are traditional file or filesystem
attributes. The third type of attribute is the named attribute. A
naned attribute is an opaque byte streamthat is associated with a
directory or file and referred to by a string nane. Naned attributes
are neant to be used by client applications as a nethod to associate
application specific data with a regular file or directory.

One significant addition to the recommrended set of file attributes is
the Access Control List (ACL) attribute. This attribute provides for
directory and file access control beyond the nodel used in previous
versions of the NFS protocol. The ACL definition allows for
specification of user and group |evel access control

Shepler, et al. St andards Track [Page 12]

RFC 3530 NFS version 4 Protocol April 2003

1.4.3.3. Filesystem Replication and Mgration

Wth the use of a special file attribute, the ability to migrate or
replicate server filesystens is enabled within the protocol. The
filesystem | ocations attribute provides a nethod for the client to
probe the server about the location of a filesystem |In the event of
a mgration of a filesystem the client will receive an error when
operating on the filesystemand it can then query as to the new file
systemlocation. Sinilar steps are used for replication, the client
is able to query the server for the nultiple avail able | ocations of a
particular filesystem Fromthis information, the client can use its
own policies to access the appropriate filesystemlocation

1.4.4. OPEN and CLCSE

The NFS version 4 protocol introduces OPEN and CLOSE operations. The
OPEN operation provides a single point where file | ookup, creation,
and share senmantics can be conbined. The CLOSE operation al so
provides for the release of state accunul ated by OPEN

1.4.5. File locking

Wth the NFS version 4 protocol, the support for byte range file
locking is part of the NFS protocol. The file |ocking support is
structured so that an RPC cal | back nechanismis not required. This
is a departure fromthe previous versions of the NFS file | ocking
protocol, Network Lock Manager (NLM. The state associated with file

locks is maintained at the server under a | ease-based nodel. The
server defines a single |lease period for all state held by a NFS
client. |If the client does not renewits |lease within the defined

period, all state associated with the client’'s | ease nmay be rel eased
by the server. The client may renew its | ease with use of the RENEW
operation or inplicitly by use of other operations (primarily READ).

1.4.6. dient Caching and Del egation

The file, attribute, and directory caching for the NFS version 4
protocol is simlar to previous versions. Attributes and directory
i nformati on are cached for a duration determined by the client. At
the end of a predefined timeout, the client will query the server to
see if the related fil esystem obj ect has been updated.

For file data, the client checks its cache validity when the file is
opened. A query is sent to the server to deternmine if the file has
been changed. Based on this information, the client determines if
the data cache for the file should kept or released. Also, when the
file is closed, any nodified data is witten to the server

Shepler, et al. St andards Track [Page 13]

RFC 3530 NFS version 4 Protocol April 2003

If an application wants to serialize access to file data, file
| ocking of the file data ranges in question should be used.

The major addition to NFS version 4 in the area of caching is the
ability of the server to delegate certain responsibilities to the
client. Wen the server grants a delegation for a file to a client,
the client is guaranteed certain senantics with respect to the
sharing of that file with other clients. At OPEN, the server nay
provide the client either a read or wite delegation for the file.
If the client is granted a read delegation, it is assured that no
other client has the ability to wite to the file for the duration of
the delegation. |If the client is granted a wite del egation, the
client is assured that no other client has read or wite access to
the file.

Del egations can be recalled by the server. [If another client
requests access to the file in such a way that the access conflicts
with the granted del egation, the server is able to notify the initial
client and recall the delegation. This requires that a call back path
exi st between the server and client. |If this callback path does not
exi st, then del egations can not be granted. The essence of a
delegation is that it allows the client to locally service operations
such as OPEN, CLOSE, LOCK, LOCKU, READ, WRI TE wi t hout i medi ate
interaction with the server

1.5. GCeneral Definitions

The followi ng definitions are provided for the purpose of providing
an appropriate context for the reader

dient The "client" is the entity that accesses the NFS server’s
resources. The client may be an application which contains
the logic to access the NFS server directly. The client
may al so be the traditional operating systemclient renote
filesystemservices for a set of applications.

In the case of file locking the client is the entity that
mai ntains a set of |ocks on behalf of one or nore
applications. This client is responsible for crash or
failure recovery for those locks it manages.

Note that nultiple clients may share the sane transport and
multiple clients may exist on the sane network node.

Clientid A 64-bit quantity used as a unique, short-hand reference to

a client supplied Verifier and ID. The server is
responsi ble for supplying the dientid.

Shepler, et al. St andards Track [Page 14]

RFC 3530

Lease

Lock

Server

NFS version 4 Protocol April 2003

An interval of time defined by the server for which the
client is irrevocably granted a lock. At the end of a

| ease period the lock may be revoked if the | ease has not
been extended. The |ock nust be revoked if a conflicting
| ock has been granted after the |ease interval

Al'l | eases granted by a server have the sane fixed
interval. Note that the fixed interval was chosen to

all eviate the expense a server would have in naintaining
state about variable length | eases across server failures.

The term"lock" is used to refer to both record (byte-
range) |locks as well as share reservations unl ess
specifically stated otherw se.

The "Server" is the entity responsible for coordinating
client access to a set of filesystens.

Stabl e Storage

Stateid

NFS version 4 servers nust be able to recover w thout data
loss frommultiple power failures (including cascading
power failures, that is, several power failures in quick
succession), operating systemfailures, and hardware
failure of conponents other than the storage nediumitself
(for example, disk, nonvolatile RAM.

Some exanpl es of stable storage that are allowable for an
NFS server include:

1. Media commit of data, that is, the nodified data has
been successfully witten to the disk nedia, for
exanpl e, the disk platter

2. An imedi ate reply disk drive with battery-backed on-
drive internmedi ate storage or uninterruptible power
system (UPS)

3. Server conmit of data with battery-backed internediate
storage and recovery software.

4. Cache conmit with uninterruptible power system (UPS) and
recovery software

A 128-bit quantity returned by a server that uniquely
defines the open and | ocking state provided by the server
for a specific open or |ock owner for a specific file.

Shepler, et al. St andards Track [Page 15]

April 2003

bits 1 have speci al

RFC 3530 NFS version 4 Protoco
Statei ds conposed of all bits 0 or al
neani ng and are reserved val ues.

Verifier A 64-bit quantity generated by the client that the server
can use to deternmine if the client has restarted and | ost
all previous |lock state.

2. Protocol Data Types

2.

Shepl er,

1

The syntax and semantics to describe the data types of the NFS

version 4 protocol
docunent s.
types and structures specific to this protocol.

Basi ¢ Data Types

are defined in the XDR [RFC1832] and RPC [RFC1831]
The next sections build upon the XDR data types to define

Data Type Definition

int32_t typedef int int32_t;

ui nt 32_t t ypedef unsigned int ui nt 32_t;

int64_t typedef hyper int64_t;

ui nt 64 _t t ypedef unsigned hyper uint64_t;

attrlist4 t ypedef opaque attrlistd4<s;
Used for file/directory attributes

bi t rap4 typedef uint32_t bi t map4<>
Used in attribute array encodi ng.

changei d4 t ypedef ui nt 64_t changei d4;
Used in definition of change_info

clientid4 typedef uint64_t clientidd4;

conmponent 4

Shorthand reference to client identification

typedef utf8str_cs conponent 4;
Represents path nane conponents

count 4 typedef uint32_t count 4;
Various count paraneters (READ, WRI TE, COVWM T)
| engt h4 typedef uint64_t | engt h4;
Descri bes LOCK | engt hs
et al. St andards Track [Page 16]

RFC 3530

| i nkt ext 4

node4

nfs_cooki e4

nfs fh4

nfs ftype4d

nf sstat 4

of fset4

pat hnane4

qop4

sec_oi d4

seqi d4

utf8string

utf8str _cis

utf8str_cs

Shepler, et al.

NFS version 4 Protocol April 2003
typedef utf8str_cs I i nkt ext 4;
Synbolic link contents
typedef uint32_t node4;

Mode attribute data type

typedef uint64_t nfs_cooki e4;
Opaque cooki e val ue for READDI R

typedef opaque nfs_f h4<NFS4_FHSI ZE>
Fil ehandl e definition; NFS4 _FHSI ZE is defined as 128

enum nfs_ftype4,;
Various defined file types

enum nf sst at 4;
Return val ue for operations

typedef uint64_t of f set 4;
Various of fset designations (READ, WRI TE,
LOCK, COW T)

typedef conponent 4 pat hnanme4<>;
Represents path nane for LOOKUP, OPEN and others

typedef uint32_t qop4;
Quality of protection designation in SECI NFO

typedef opaque sec_oi d4<>

Security Object ldentifier

The sec_oid4 data type is not really opaque.

I nstead contains an ASN. 1 OBJECT | DENTI FI ER as used
by GSS-API in the nech_type argunment to

GSS Init_sec_context. See [RFC2743] for details.

typedef uint32_t seqi d4;
Sequence identifier used for file |ocking

t ypedef opaque utf 8stri ng<>
UTF-8 encodi ng for strings

t ypedef opaque utf8str _cis
Case-insensitive UTF-8 string

t ypedef opaque utf8str_cs
Case-sensitive UTF-8 string

St andards Track [Page 17]

RFC 3530 NFS version 4 Protocol April 2003

ut f 8str_nmi xed t ypedef opaque ut f 8str_nmi xed
UTF-8 strings with a case sensitive prefix and
a case insensitive suffix.

verifierd typedef opaque verifier4[NFS4_VERI Fl ER_SI ZE] ;
Verifier used for various operations (COW T,
CREATE, OPEN, READDI R, SETCLI ENTI D
SETCLI ENTI D_CONFIRM WRI TE) NFS4_VERI FIER SI ZE is
defined as 8.

2.2. Structured Data Types

nf sti me4
struct nfstinme4d {
int64_t seconds;
ui nt 32_t nseconds;

}

The nfstinme4 structure gives the nunber of seconds and nanoseconds
since mdnight or 0 hour January 1, 1970 Coordinated Universal Tinme
(UTC). Values greater than zero for the seconds field denote dates
after the 0 hour January 1, 1970. Values less than zero for the
seconds field denote dates before the 0 hour January 1, 1970. 1In
both cases, the nseconds field is to be added to the seconds field
for the final tine representation. For exanple, if the tine to be
represented is one-half second before 0 hour January 1, 1970, the
seconds field would have a val ue of negative one (-1) and the
nseconds fields would have a val ue of one-half second (500000000).
Val ues greater than 999, 999,999 for nseconds are considered invalid.

This data type is used to pass tinme and date information. A server
converts to and fromits local representation of tine when processing
time val ues, preserving as nuch accuracy as possible. [If the
precision of tinestanps stored for a fil esystemobject is |less than
defined, |oss of precision can occur. An adjunct time naintenance
protocol is recommended to reduce client and server tine skew.

ti me_howd
enum ti me_howd {

SET_TO_SERVER_TI ME4
SET_TO_CLI ENT_TI ME4

b

Shepler, et al. St andards Track [Page 18]

RFC 3530 NFS version 4 Protocol April 2003

setti ne4

union settinme4 switch (tine_how4 set it) {
case SET_TO CLI ENT_TI ME4:
nfsti me4 time;
def aul t:
voi d;
s

The above definitions are used as the attribute definitions to set
tinme values. If set it is SET_TO SERVER Tl ME4, then the server uses
its local representation of tine for the tine val ue.

specdat a4

struct specdatad {
uint32_t specdatal; /* major device nunber */
uint32_t specdata2; /* minor device nunber */

b

This data type represents additional information for the device file
types NF4ACHR and NF4BLK

fsid4
struct fsid4 {
ui nt 64_t nmaj or ;
ui nt 64 _t m nor ;
i
This type is the filesystemidentifier that is used as a nandatory
attribute.

fs locationd

struct fs_|locationd {
utf8str _cis server <>;
pat hnanme4 r oot pat h;

s
fs |l ocations4
struct fs_locations4d {

pat hnane4 fs_root;
fs locationd |ocations<>;

H

Shepler, et al. St andards Track [Page 19]

RFC 3530 NFS version 4 Protocol April 2003

The fs_locationd4 and fs | ocations4 data types are used for the
fs_locations reconmended attribute which is used for migration and
replication support.

fattr4
struct fattr4 {
bi t map4 attrnask;
attrlist4 attr_vals;

s

The fattr4 structure is used to represent file and directory
attributes

The bitmap is a counted array of 32 bit integers used to contain bit
val ues. The position of the integer in the array that contains bit n

can be conputed fromthe expression (n/ 32) and its bit within that
integer is (n nod 32).

change_i nfo4

struct change_i nfo4 {

bool at om c;
changei d4 bef or e;
changei d4 after

b

This structure is used with the CREATE, LINK, REMOVE, RENAME
operations to let the client know the val ue of the change attribute
for the directory in which the target fil esystem object resides.

clientaddr4

struct clientaddr4 {
/* see struct rpcb in RFC 1833 */
string r_netid<>; /* network id */
string r_addr<>; /* universal address */
i
The clientaddr4 structure is used as part of the SETCLIENTID

operation to either specify the address of the client that is using a
clientid or as part of the callback registration. The

Shepler, et al. St andards Track [Page 20]

RFC 3530 NFS version 4 Protocol April 2003

r netid and r_addr fields are specified in [RFC1833], but they are
underspecified in [RFC1833] as far as what they should | ook like for
speci fic protocols.

For TCP over |IPv4 and for UDP over IPv4, the format of r_addr is the
US- ASCI | string:

h1l. h2. h3. h4. p1. p2

The prefix, "hl.h2.h3.h4", is the standard textual formfor
representing an | Pv4 address, which is always four octets |ong.
Assum ng bi g-endi an ordering, hl, h2, h3, and h4, are respectively,
the first through fourth octets each converted to ASCI|-deci nal.
Assum ng bi g-endi an ordering, pl and p2 are, respectively, the first
and second octets each converted to ASCl|-decinmal. For exanple, if a
host, in big-endian order, has an address of 0x0A010307 and there is
a service listening on, in big endian order, port 0x020F (deci nal
527), then the conplete universal address is "10.1.3.7.2.15"

For TCP over IPv4 the value of r_netid is the string "tcp". For UDP
over |Pv4 the value of r_netid is the string "udp”

For TCP over |IPv6 and for UDP over IPv6, the fornmat of r_addr is the
US-ASCI | string:

x1:x2: x3: x4: X5: x6: x7: x8. pl. p2

The suffix "pl.p2" is the service port, and is conputed the same way
as with universal addresses for TCP and UDP over |Pv4. The prefix,
"x1:x2:x3: x4: x5: x6: x7:x8", is the standard textual formfor
representing an | Pv6 address as defined in Section 2.2 of [RFC2373].
Additionally, the two alternative forns specified in Section 2.2 of
[RFC2373] are al so acceptabl e.

For TCP over IPv6 the value of r_netid is the string "tcp6". For UDP
over | Pv6 the value of r_netid is the string "udp6"

cb client4
struct cb_client4 {

unsigned int cb_program
clientaddr4 cb_location

b

This structure is used by the client to informthe server of its cal
back address; includes the program nunber and client address.

Shepler, et al. St andards Track [Page 21]

RFC 3530 NFS version 4 Protocol April 2003

nfs client _id4

struct nfs_client _id4 {

verifier4d verifier;

opaque i d<NFS4_OPAQUE LI M T>
}

This structure is part of the argunents to the SETCLI ENTI D operati on.
NFS4 _OPAQUE LIMT is defined as 1024.

open_owner 4

struct open_owner4 {

clientid4 clientid;

opaque owner <NFS4_OPAQUE LI M T>
b

This structure is used to identify the owner of open state.
NFS4 OPAQUE LIMT is defined as 1024.

| ock_owner 4
struct | ock_owner4 {
clientid4 clientid;
opaque owner <NFS4_OPAQUE LI M T>;
i

This structure is used to identify the owner of file |locking state.
NFS4 OPAQUE LIMT is defined as 1024.

open_to_| ock_owner 4

struct open_to_I|l ock_owner4 {

seqi d4 open_seqi d;
statei d4 open_statei d;
seqi d4 | ock_seqid;
| ock_owner 4 | ock_owner
H
This structure is used for the first LOCK operation done for an
open_owner4. It provides both the open_stateid and | ock_owner such

that the transition is nmade froma valid open_statei d sequence to
that of the new | ock_stateid sequence. Using this nmechani sm avoids
the confirmation of the | ock owner/lock seqid pair since it is tied
to established state in the formof the open_stateid/open_seqid.

Shepler, et al. St andards Track [Page 22]

RFC 3530 NFS version 4 Protocol April 2003

st at ei d4
struct stateid4 {
ui nt 32_t seqi d;
opaque other[12];

This structure is used for the various state sharing nechani sns
between the client and server. For the client, this data structure
is read-only. The starting value of the seqid field is undefined.
The server is required to increment the seqid field nonotonically at
each transition of the stateid. This is inportant since the client
will inspect the seqid in OPEN stateids to deternine the order of
OPEN processi ng done by the server.

3. RPC and Security Flavor

The NFS version 4 protocol is a Renpbte Procedure Call (RPC)
application that uses RPC version 2 and the correspondi ng eXterna
Dat a Representation (XDR) as defined in [RFC1831] and [RFC1832]. The
RPCSEC_GSS security flavor as defined in [RFC2203] MJUST be used as
the mechanismto deliver stronger security for the NFS version 4

pr ot ocol

3.1. Ports and Transports

Historically, NFS version 2 and version 3 servers have resided on
port 2049. The registered port 2049 [RFC3232] for the NFS protoco
shoul d be the default configuration. Using the registered port for
NFS services neans the NFS client will not need to use the RPC

bi ndi ng protocols as described in [RFC1833]; this will allow NFS to
transit firewalls.

Where an NFS version 4 inplenmentation supports operation over the IP
net wor k protocol, the supported transports between NFS and | P MJUST be
anong the | ETF-approved congestion control transport protocols, which
i nclude TCP and SCTP. To enhance the possibilities for
interoperability, an NFS version 4 inplenentation MJST support
operation over the TCP transport protocol, at least until such time
as a standards track RFC revises this requirenent to use a different

| ETF- approved congestion control transport protocol

If TCP is used as the transport, the client and server SHOULD use
persi stent connections. This will prevent the weakening of TCP' s

congestion control via short |ived connections and will inprove
performance for the WAN environnent by elimnating the need for SYN
handshakes.

Shepler, et al. St andards Track [Page 23]

RFC 3530 NFS version 4 Protocol April 2003

As noted in the Security Considerations section, the authentication
nodel for NFS version 4 has noved from nachi ne-based to principal -
based. However, this nodification of the authentication nodel does
not inply a technical requirement to nove the TCP connection
managenent nodel from whol e nachi ne-based to one based on a per user
nodel . In particular, NFS over TCP client inplenentations have
traditionally nultiplexed traffic for nmultiple users over a comon
TCP connection between an NFS client and server. This has been true,
regardl ess whether the NFS client is using AUTH SYS, AUTH DH,

RPCSEC GSS or any other flavor. Similarly, NFS over TCP server

i npl enent ati ons have assunmed such a nodel and thus scale the

i mpl enent ati on of TCP connecti on managenent in proportion to the
nunber of expected client machines. It is intended that NFS version
4 will not nodify this connection managenment nodel. NFS version 4
clients that violate this assunption can expect scaling issues on the
server and hence reduced service.

Note that for various tiners, the client and server should avoid
i nadvertent synchroni zation of those tinmers. For further discussion
of the general issue refer to [Floyd].

3.1.1. dient Retransm ssi on Behavi or

When processing a request received over a reliable transport such as
TCP, the NFS version 4 server MJST NOT silently drop the request,
except if the transport connection has been broken. G ven such a
contract between NFS version 4 clients and servers, clients MJST NOT
retry a request unless one or both of the followi ng are true:

0 The transport connection has been broken
0 The procedure being retried is the NULL procedure

Since reliable transports, such as TCP, do not always synchronously
i nforma peer when the other peer has broken the connection (for
exanpl e, when an NFS server reboots), the NFS version 4 client may
want to actively "probe" the connection to see if has been broken
Use of the NULL procedure is one reconmended way to do so. So, when
a client experiences a renote procedure call timeout (of sone
arbitrary inplenmentation specific anount), rather than retrying the

renote procedure call, it could instead issue a NULL procedure cal
to the server. |If the server has died, the transport connection
break will eventually be indicated to the NFS version 4 client. The
client can then reconnect, and then retry the original request. |If

the NULL procedure call gets a response, the connection has not
broken. The client can decide to wait |onger for the origina
request’s response, or it can break the transport connection and
reconnect before re-sending the original request.

Shepler, et al. St andards Track [Page 24]

RFC 3530 NFS version 4 Protocol April 2003

For call backs fromthe server to the client, the sane rules apply,
but the server doing the callback becones the client, and the client
receiving the call back becones the server

3.2. Security Flavors

Tradi tional RPC inplenentations have included AUTH NONE, AUTH SYS
AUTH DH, and AUTH KRB4 as security flavors. Wth [RFC2203] an
additional security flavor of RPCSEC GSS has been introduced which
uses the functionality of GSS-API [RFC2743]. This allows for the use
of various security mechanisnms by the RPC | ayer without the

addi tional inplenentation overhead of addi ng RPC security flavors.

For NFS version 4, the RPCSEC GSS security flavor MJUST be used to
enabl e the mandatory security nechanism Qher flavors, such as,
AUTH _NONE, AUTH_SYS, and AUTH DH MAY be inplenented as well.

3.2.1. Security nechanisns for NFS version 4

The use of RPCSEC GSS requires selection of: nechanism quality of
protection, and service (authentication, integrity, privacy). The
remai nder of this document will refer to these three paraneters of
the RPCSEC GSS security as the security triple.

3.2.1.1. Kerberos V5 as a security triple

The Kerberos V5 GSS- APl nechani sm as described in [RFC1964] MJST be
i mpl emrent ed and provide the followi ng security triples.

col umm descri pti ons:

== nunber of pseudo flavor
== nanme of pseudo flavor
mechanisnmis QD

== mechani sm s al gorithm(s)
== RPCSEC GSS service

abrwWwNBE
Il
1l

390003 krb5 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_none
390004 krb5i 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_integrity
390005 krb5p 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_privacy

for integrity,

and 56 bit DES

for privacy.

Note that the pseudo flavor is presented here as a mapping aid to the

i npl ementor. Because this NFS protocol includes a nmethod to
negotiate security and it understands the GSS-API nechanism the

Shepler, et al. St andards Track [Page 25]

RFC 3530 NFS version 4 Protocol April 2003

pseudo flavor is not needed. The pseudo flavor is needed for NFS
version 3 since the security negotiation is done via the MOUNT
pr ot ocol

For a discussion of NFS use of RPCSEC GSS and Kerberos V5, please
see [RFC2623].

Users and inplementors are warned that 56 bit DES is no | onger
considered state of the art in terns of resistance to brute force
attacks. Once a revision to [RFC1964] is available that adds support
for AES, inplenentors are urged to incorporate AES into their NFSv4
over Kerberos V5 protocol stacks, and users are simlarly urged to
mgrate to the use of AES.

3.2.1.2. LIPKEY as a security triple

The LI PKEY GSS- APl nechani sm as described in [RFC2847] MJST be

i npl enented and provide the following security triples. The
definition of the colums natches the previous subsection "Kerberos
V5 as security triple"

1 2 3 4 5

390006 |i pkey 1.3.6.1.5.5.9 negotiated rpc_gss_svc_none
390007 |ipkey-i 1.3.6.1.5.5.9 negotiated rpc_gss_svc integrity
390008 |ipkey-p 1.3.6.1.5.5.9 negotiated rpc_gss_svc_privacy
The mechanismalgorithmis listed as "negotiated". This is because

LIPKEY is layered on SPKM 3 and in SPKM 3 [RFC2847] the
confidentiality and integrity algorithns are negotiated. Since
SPKM 3 specifies HVAC-MD5 for integrity as MANDATORY, 128 bit
cast5CBC for confidentiality for privacy as MANDATORY, and further
specifies that HVAC- MD5 and cast5CBC MJUST be listed first before
weaker al gorithns, specifying "negotiated" in colum 4 does not
inmpair interoperability. 1In the event an SPKM 3 peer does not
support the nandatory al gorithns, the other peer is free to accept or
reject the GSS-API context creation

Because SPKM 3 negotiates the algorithnms, subsequent calls to

LI PKEY' s GSS Wap() and GSS GetM C() by RPCSEC GSS will use a quality
of protection value of 0 (zero). See section 5.2 of [RFC2025] for an
expl anat i on.

LI PKEY uses SPKM 3 to create a secure channel in which to pass a user
name and password fromthe client to the server. Once the user nane
and password have been accepted by the server, calls to the LIPKEY
context are redirected to the SPKM 3 context. See [RFC2847] for nore
details.

Shepler, et al. St andards Track [Page 26]

RFC 3530 NFS version 4 Protocol April 2003

3.2.1.3. SPKM3 as a security triple

The SPKM 3 GSS- APl nechani sm as described in [RFC2847] MJST be

i mpl ement ed and provide the followi ng security triples. The
definition of the columms natches the previous subsection "Kerberos
V5 as security triple"

390009 spknB 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_none
390010 spknBi 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_integrity
390011 spknBp 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_privacy

For a discussion as to why the mechanismalgorithmis listed as
"negoti ated", see the previous section "LIPKEY as a security triple."

Because SPKM 3 negotiates the al gorithnms, subsequent calls to SPKM
3's GSS Wap() and GSS GetM C() by RPCSEC GSS will use a quality of
protection value of 0 (zero). See section 5.2 of [RFC2025] for an
expl anat i on.

Even though LIPKEY is |ayered over SPKM 3, SPKM 3 is specified as a
mandatory set of triples to handle the situations where the initiator
(the client) is anonynous or where the initiator has its own
certificate. |If the initiator is anonynous, there will not be a user
nane and password to send to the target (the server). |f the
initiator has its own certificate, then using passwords is
super f | uous.

3.3. Security Negotiation

Wth the NFS version 4 server potentially offering nultiple security
mechani sms, the client needs a nethod to determine or negotiate which
mechanismis to be used for its communication with the server. The
NFS server may have multiple points within its filesystem nane space
that are available for use by NFS clients. In turn the NFS server
may be configured such that each of these entry points may have
different or multiple security mechani sms in use.

The security negotiation between client and server nust be done with
a secure channel to elimnate the possibility of a third party

i ntercepting the negotiation sequence and forcing the client and
server to choose a |lower level of security than required or desired
See the section "Security Considerations" for further discussion

Shepler, et al. St andards Track [Page 27]

RFC 3530 NFS version 4 Protocol April 2003

3.3.1. SECINFO

The new SECI NFO operation will allow the client to determine, on a
per filehandl e basis, what security triple is to be used for server
access. In general, the client will not have to use the SECI NFO
operation except during initial comunication with the server or when
the client crosses policy boundaries at the server. It is possible
that the server’s policies change during the client’s interaction
therefore forcing the client to negotiate a new security triple.

3.3.2. Security Error

Based on the assunption that each NFS version 4 client and server
nmust support a mninum set of security (i.e., LIPKEY, SPKM 3, and
Ker beros-V5 all under RPCSEC GSS), the NFS client will start its
communi cation with the server with one of the miniml security
triples. During conmunication with the server, the client may
receive an NFS error of NFS4ERR WRONGSEC. This error allows the
server to notify the client that the security triple currently being
used is not appropriate for access to the server’s filesystem
resources. The client is then responsible for deternining what
security triples are available at the server and choose one which is
appropriate for the client. See the section for the "SEC NFO'
operation for further discussion of howthe client will respond to

t he NFS4ERR _WRONGSEC error and use SECI NFO.

3.4. Callback RPC Authentication
Except as noted el sewhere in this section, the callback RPC
(described later) MJUST nutually authenticate the NFS server to the
principal that acquired the clientid (also described later), using
the security flavor the original SETCLIENTID operation used.
For AUTH NONE, there are no principals, so this is a non-issue
AUTH_SYS has no notions of nutual authentication or a server
principal, so the callback fromthe server sinply uses the AUTH SYS
credential that the user used when he set up the del egation

For AUTH DH, one commonly used convention is that the server uses the
credential corresponding to this AUTH DH pri nci pal

uni x. host @omai n
where host and dormain are variabl es corresponding to the nane of

server host and directory services domain in which it lives such as a
Net work I nformation System domain or a DNS domai n.

Shepler, et al. St andards Track [Page 28]

RFC 3530 NFS version 4 Protocol April 2003

Because LIPKEY is |layered over SPKM 3, it is perm ssible for the
server to use SPKM 3 and not LIPKEY for the callback even if the
client used LIPKEY for SETCLI ENTID

Regar dl ess of what security mechani sm under RPCSEC GSS i s being used,
the NFS server, MJST identify itself in GSS-APlI via a
GSS_C_NT_HOSTBASED_SERVI CE nane type. GSS_C_NT_HOSTBASED_ SERVI CE
names are of the form

servi ce@ost nane
For NFS, the "service" elenent is
nfs

| mpl enent ati ons of security mechanisns will convert nfs@ostnane to
various different fornms. For Kerberos V5 and LIPKEY, the follow ng
formis RECOMVENDED:

nf s/ host nane

For Kerberos V5, nfs/hostname would be a server principal in the
Kerberos Key Distribution Center database. This is the same
principal the client acquired a GSS-API context for when it issued
the SETCLI ENTID operation, therefore, the real mnane for the server
principal nmust be the sane for the callback as it was for the
SETCLI ENTI D.

For LIPKEY, this would be the usernane passed to the target (the NFS
version 4 client that receives the call back).

It should be noted that LIPKEY may not work for call backs, since the
LI PKEY client uses a user id/password. |If the NFS client receiving
the cal | back can authenticate the NFS server’s user nane/ password
pair, and if the user that the NFS server is authenticating to has a
public key certificate, then it works.

In situations where the NFS client uses LIPKEY and uses a per-host
principal for the SETCLI ENTI D operation, instead of using LIPKEY for
SETCLIENTID, it is RECOMVENDED that SPKM 3 with nutual authentication
be used. This effectively nmeans that the client will use a
certificate to authenticate and identify the initiator to the target
on the NFS server. Using SPKM 3 and not LIPKEY has the follow ng
advant ages:

o Wen the server does a callback, it nust authenticate to the

principal used in the SETCLIENTID. Even if LIPKEY is used,
because LIPKEY is layered over SPKM 3, the NFS client will need to

Shepler, et al. St andards Track [Page 29]

RFC 3530 NFS version 4 Protocol April 2003

4.

4.

have a certificate that corresponds to the principal used in the
SETCLI ENTI D operation. From an adnministrative perspective, having
a user nane, password, and certificate for both the client and
server is redundant.

0 LIPKEY was intended to minimze additional infrastructure
requi renents beyond a certificate for the target, and the
expectation is that existing password infrastructure can be
| everaged for the initiator. In sone environments, a per-host
password does not exist yet. |If certificates are used for any
per-host principals, then additional password infrastructure is
not needed.

0 |In cases when a host is both an NFS client and server, it can
share the sane per-host certificate.

Fi | ehandl es

The filehandle in the NFS protocol is a per server unique identifier
for a filesystemobject. The contents of the filehandle are opaque
to the client. Therefore, the server is responsible for translating
the filehandle to an internal representation of the fil esystem

obj ect.

1. Obtaining the First Fil ehandle

The operations of the NFS protocol are defined in terns of one or
nore filehandles. Therefore, the client needs a filehandle to
initiate comunication with the server. Wth the NFS version 2
protocol [RFCL094] and the NFS version 3 protocol [RFC1813], there
exists an ancillary protocol to obtain this first filehandle. The
MOUNT protocol, RPC program nunber 100005, provides the nmechani sm of
translating a string based fil esystem path nane to a fil ehandl e which
can then be used by the NFS protocols.

The MOUNT protocol has deficiencies in the area of security and use
via firewalls. This is one reason that the use of the public
filehandl e was introduced in [RFC2054] and [RFC2055]. Wth the use
of the public filehandle in conbination with the LOOKUP operation in
the NFS version 2 and 3 protocols, it has been denonstrated that the
MOUNT protocol is unnecessary for viable interaction between NFS
client and server.

Therefore, the NFS version 4 protocol will not use an ancillary
protocol for translation fromstring based path nanes to a
filehandle. Two special filehandles will be used as starting points
for the NFS client.

Shepler, et al. St andards Track [Page 30]

RFC 3530 NFS version 4 Protocol April 2003

4.1.1. Root Filehandle

The first of the special filehandles is the ROOT filehandle. The
ROOT filehandle is the "conceptual" root of the filesystem name space
at the NFS server. The client uses or starts with the ROOT
filehandl e by enpl oyi ng the PUTROOTFH operation. The PUTROOTFH
operation instructs the server to set the "current”" filehandle to the
ROOT of the server’s file tree. Once this PUTROOTFH operation is
used, the client can then traverse the entirety of the server’'s file
tree with the LOOKUP operation. A conplete discussion of the server
nane space is in the section "NFS Server Nane Space"

4.1.2. Public Filehandle

The second special filehandle is the PUBLIC fil ehandle. Unlike the
ROOT fil ehandl e, the PUBLIC fil ehandl e nay be bound or represent an
arbitrary filesystemobject at the server. The server is responsible
for this binding. It nmay be that the PUBLIC fil ehandl e and the ROOT
filehandl e refer to the sanme fil esystemobject. However, it is up to
the adnministrative software at the server and the policies of the
server administrator to define the binding of the PUBLIC fil ehandl e
and server filesystemobject. The client may not make any
assunptions about this binding. The client uses the PUBLIC
filehandl e via the PUTPUBFH operati on

4.2. Filehandl e Types

In the NFS version 2 and 3 protocols, there was one type of
filehandle with a single set of semantics. This type of filehandle
is terned "persistent” in NFS Version 4. The semantics of a
persistent filehandle renmain the sane as before. A new type of
filehandl e introduced in NFS Version 4 is the "volatile" filehandle,
which attenpts to accommpdate certain server environnents.

The volatile filehandl e type was introduced to address server
functionality or inplenentation issues which nake correct

i npl enentation of a persistent filehandle infeasible. Sone server
environnents do not provide a filesystemlevel invariant that can be
used to construct a persistent filehandle. The underlying server
filesystemmay not provide the invariant or the server’s fil esystem
progranm ng interfaces may not provide access to the needed
invariant. Volatile filehandl es may ease the inplenentation of
server functionality such as hierarchical storage managenent or
filesystemreorgani zation or mgration. However, the volatile
filehandl e increases the inplenmentation burden for the client.

Shepler, et al. St andards Track [Page 31]

RFC 3530 NFS version 4 Protocol April 2003

Since the client will need to handl e persistent and volatile
filehandles differently, a file attribute is defined which may be
used by the client to deternmine the filehandle types being returned
by the server.

4.2.1. Ceneral Properties of a Filehandle

The filehandl e contains all the information the server needs to

di stinguish an individual file. To the client, the filehandle is
opaque. The client stores filehandles for use in a later request and
can conpare two filehandles fromthe same server for equality by
doi ng a byte-by-byte conparison. However, the client MJST NOT
otherwi se interpret the contents of filehandles. [If two filehandles
fromthe sane server are equal, they MIUST refer to the sanme file
Servers SHOULD try to naintain a one-to-one correspondence between
filehandles and files but this is not required. dients MIST use
filehandl e conpari sons only to inprove perfornmance, not for correct
behavior. Al clients need to be prepared for situations in which it
cannot be determ ned whether two fil ehandl es denote the sane object
and in such cases, avoid naking invalid assunptions which m ght cause
i ncorrect behavior. Further discussion of filehandle and attribute
conmparison in the context of data caching is presented in the section
"Data Caching and File ldentity".

As an exanple, in the case that two different path nanes when
traversed at the server term nate at the same fil esystem object, the
server SHOULD return the sane filehandle for each path. This can
occur if a hard link is used to create two file nanmes which refer to
the sane underlying file object and associated data. For exanple, if
paths /a/b/c and /a/d/c refer to the sane file, the server SHOULD
return the sanme filehandl e for both path nanes traversals.

4.2.2. Persistent Fil ehandl e

A persistent filehandle is defined as having a fixed value for the
lifetinme of the filesystemobject to which it refers. Once the
server creates the filehandle for a filesystem object, the server
MJUST accept the sanme filehandle for the object for the lifetime of
the object. |If the server restarts or reboots the NFS server nust
honor the sane filehandle value as it did in the server’s previous
instantiation. Simlarly, if the filesystemis migrated, the new NFS
server nust honor the same filehandl e as the old NFS server

The persistent filehandle will be beconme stale or invalid when the
filesystemobject is removed. Wen the server is presented with a
persistent filehandle that refers to a deleted object, it MJST return
an error of NFSAERR _STALE. A filehandl e may becone stal e when the
filesystemcontaining the object is no longer available. The file

Shepler, et al. St andards Track [Page 32]

RFC 3530 NFS version 4 Protocol April 2003

system nmay beconme unavailable if it exists on renovabl e nedia and the
nmedia is no longer available at the server or the filesystemin whole
has been destroyed or the filesystem has sinply been renoved fromthe
server’s name space (i.e., unmounted in a UNI X environment).

4,.2.3. Volatile Filehandle

A volatile filehandl e does not share the sane | ongevity
characteristics of a persistent filehandle. The server may determ ne
that a volatile filehandle is no longer valid at many different
points intine. |If the server can definitively determne that a
volatile filehandl e refers to an object that has been renoved, the
server should return NFS4ERR STALE to the client (as is the case for
persistent filehandles). |In all other cases where the server
determines that a volatile filehandl e can no | onger be used, it
should return an error of NFS4ERR FHEXPI RED

The mandatory attribute "fh _expire_ type" is used by the client to
determi ne what type of filehandl e the server is providing for a
particular filesystem This attribute is a bitnmask with the
fol l owi ng val ues:

FH4_PERSI STENT
The val ue of FH4_PERSI STENT is used to indicate a
persistent filehandle, which is valid until the object is
removed fromthe filesystem The server will not return
NFS4ERR_FHEXPI RED for this filehandle. FH4_PERSI STENT is
defined as a value in which none of the bits specified
bel ow are set.

FH4_VOLATI LE_ANY
The filehandl e may expire at any tinme, except as
specifically excluded (i.e., FHA_NO EXPI RE_W TH _OPEN)

FH4_NOEXPI RE_W TH_OPEN
May only be set when FH4_VOLATILE ANY is set. |If this bit
is set, then the neaning of FH4_VOLATILE ANY is qualified
to exclude any expiration of the filehandle when it is
open.

FH4_VOL_M GRATI ON
The filehandle will expire as a result of mgration. |If
FHA VOL_ANY is set, FH4 VOL_M GRATION i s redundant.

Shepler, et al. St andards Track [Page 33]

RFC 3530 NFS version 4 Protocol April 2003

FH4_VOL_RENAME
The filehandle will expire during renane. This includes a
renane by the requesting client or a renane by any ot her
client. |If FH4A_VOL ANY is set, FH4 VOL_RENAME i s
r edundant .

Servers which provide volatile filehandl es that nay expire while open
(i.e., if FHA_VOL_M GRATION or FH4_VOL_RENAME is set or if

FH4A_VOLATI LE_ANY is set and FH4_NOEXPI RE_W TH_OPEN not set), should
deny a RENAME or REMOVE that would affect an OPEN file of any of the
components leading to the OPEN file. 1In addition, the server should
deny all RENAME or REMOVE requests during the grace period upon
server restart.

Note that the bits FH4_VOL_M GRATI ON and FH4_VOL_RENAME al | ow t he
client to determ ne that expiration has occurred whenever a specific
event occurs, without an explicit filehandl e expiration error from
the server. FH4_VOL_ANY does not provide this formof information
In situations where the server will expire many, but not al
filehandl es upon migration (e.g., all but those that are open),
FHA_VOLATI LE_ANY (in this case with FHA_NOEXPI RE_ WTH OPEN) is a
better choice since the client may not assune that all filehandles
wi |l expire when migration occurs, and it is likely that additiona
expirations will occur (as a result of file CLOSE) that are separated
intime fromthe mgration event itself.

4.2.4. One Method of Constructing a Volatile Filehandle
A volatile filehandl e, while opaque to the client could contain:
[volatile bit =1 | server boot time | slot | generation nunber]
o slot is an index in the server volatile filehandle table

0 generation nunber is the generation nunber for the table
entry/ sl ot

Wien the client presents a volatile filehandl e, the server makes the
foll owi ng checks, which assunme that the check for the volatile bit
has passed. |If the server boot time is less than the current server
boot tine, return NFSAERR FHEXPIRED. If slot is out of range, return
NFSAERR BADHANDLE. |f the generation nunber does not match, return
NFS4ERR_FHEXPI RED.

Wien the server reboots, the table is gone (it is volatile).

If volatile bit is O, then it is a persistent filehandle with a
different structure following it.

Shepler, et al. St andards Track [Page 34]

RFC 3530 NFS version 4 Protocol April 2003

4.3. dient Recovery from Fil ehandl e Expiration

I f possible, the client SHOULD recover fromthe receipt of an
NFS4ERR FHEXPI RED error. The client nust take on additiona
responsibility so that it may prepare itself to recover fromthe

expiration of a volatile filehandle. |If the server returns
persistent filehandles, the client does not need these additiona

st eps.

For volatile filehandl es, nbst commonly the client will need to store

t he conponent nanes |leading up to and including the fil esystem object
in question. Wth these nanes, the client should be able to recover
by finding a filehandle in the nane space that is still available or
by starting at the root of the server’s fil esystem nane space.

If the expired filehandle refers to an object that has been renoved
fromthe fil esystem obviously the client will not be able to recover
fromthe expired filehandle.

It is also possible that the expired filehandle refers to a file that
has been renanmed. |If the file was renaned by another client, again
it is possible that the original client will not be able to recover.
However, in the case that the client itself is renanming the file and
the file is open, it is possible that the client nmay be able to
recover. The client can determ ne the new path nanme based on the
processing of the rename request. The client can then regenerate the
new fil ehandl e based on the new path nane. The client could also use
t he conpound operation nmechanismto construct a set of operations
l'ike:

RENAME A B

LOOKUP B

GETFH

Not e that the COVPOUND procedure does not provide atomicity. This
exanpl e only reduces the overhead of recovering froman expired
fil ehandl e.

5. File Attributes

To neet the requirenents of extensibility and increased
interoperability with non-UNI X platforns, attributes nust be handl ed
in a flexible manner. The NFS version 3 fattr3 structure contains a
fixed list of attributes that not all clients and servers are able to
support or care about. The fattr3 structure can not be extended as
new needs arise and it provides no way to indicate non-support. Wth
the NFS version 4 protocol, the client is able query what attributes
the server supports and construct requests with only those supported
attributes (or a subset thereof).

Shepler, et al. St andards Track [Page 35]

RFC 3530 NFS version 4 Protocol April 2003

To this end, attributes are divided into three groups: nandatory,
recomended, and naned. Both mandatory and recomended attri butes
are supported in the NFS version 4 protocol by a specific and well -
defined encoding and are identified by nunber. They are requested by
setting a bit in the bit vector sent in the GETATTR request; the
server response includes a bit vector to list what attributes were
returned in the response. New nandatory or recomended attributes
may be added to the NFS protocol between najor revisions by
publishing a standards-track RFC which allocates a new attribute
nunber val ue and defines the encoding for the attribute. See the
section "M nor Versioning" for further discussion

Naned attri butes are accessed by the new OPENATTR operation, which
accesses a hidden directory of attributes associated with a file
system obj ect. OPENATTR takes a filehandle for the object and
returns the filehandle for the attribute hierarchy. The filehandle
for the nanmed attributes is a directory object accessible by LOOKUP
or READDI R and contains files whose nanes represent the naned
attributes and whose data bytes are the value of the attribute. For

exanpl e:
L OOKUP "foo" ; look up file
CETATTR attrbits
OPENATTR ; access foo’'s named attributes
L OOKUP "x11i con" ; look up specific attribute
READ 0, 4096 ; read stream of bytes

Named attributes are intended for data needed by applications rather
than by an NFS client inplenentation. NFS inplenentors are strongly
encouraged to define their new attributes as reconmended attri butes

by bringing themto the | ETF standards-track process.

The set of attributes which are classified as mandatory is
deliberately small since servers nust do whatever it takes to support
them A server should support as many of the reconmended attributes
as possible but by their definition, the server is not required to
support all of them Attributes are deened nmandatory if the data is
bot h needed by a | arge nunber of clients and is not otherw se
reasonably conputable by the client when support is not provided on
the server.

Note that the hidden directory returned by OPENATTR i s a conveni ence
for protocol processing. The client should not nake any assunptions
about the server’s inplenentation of naned attributes and whether the
underlying filesystemat the server has a naned attribute directory
or not. Therefore, operations such as SETATTR and GETATTR on the
naned attribute directory are undefi ned.

Shepler, et al. St andards Track [Page 36]

RFC 3530 NFS version 4 Protocol April 2003

5.1. Mandatory Attributes

These MUST be supported by every NFS version 4 client and server in
order to ensure a mininumlevel of interoperability. The server nust
store and return these attributes and the client nmust be able to
function with an attribute set linmted to these attributes. Wth
just the mandatory attributes sone client functionality may be
inmpaired or limted in sone ways. A client nmay ask for any of these
attributes to be returned by setting a bit in the GETATTR request and
the server nust return their val ue.

5.2. Recommended Attri butes

These attributes are understood well enough to warrant support in the
NFS version 4 protocol. However, they may not be supported on all
clients and servers. A client may ask for any of these attributes to
be returned by setting a bit in the GETATTR request but nust handl e
the case where the server does not return them A client may ask for
the set of attributes the server supports and should not request
attributes the server does not support. A server should be tol erant
of requests for unsupported attributes and sinply not return them

rat her than considering the request an error. It is expected that
servers will support all attributes they confortably can and only
fail to support attributes which are difficult to support in their
operating environnents. A server should provide attributes whenever

they don’t have to "tell lies" to the client. For exanple, a file
nodi fication tine should be either an accurate tinme or should not be
supported by the server. This will not always be confortable to

clients but the client is better positioned deci de whether and how to
fabricate or construct an attri bute or whether to do w thout the
attribute.

5.3. Naned Attributes

These attributes are not supported by direct encoding in the NFS
Version 4 protocol but are accessed by string nanmes rather than
nunbers and correspond to an uninterpreted stream of bytes which are
stored with the filesystem object. The nane space for these
attributes may be accessed by using the OPENATTR operation. The
OPENATTR operation returns a filehandle for a virtual "attribute
directory” and further perusal of the name space may be done using
READDI R and LOOKUP operations on this filehandle. Nanmed attributes
may then be exam ned or changed by nornmal READ and WRI TE and CREATE
operations on the filehandl es returned from READD R and LOOKUP
Nanmed attributes rmay have attributes

Shepler, et al. St andards Track [Page 37]

RFC 3530 NFS version 4 Protocol April 2003

It is reconmended that servers support arbitrary named attributes. A
client should not depend on the ability to store any naned attributes
in the server’'s filesystem |f a server does support naned
attributes, a client which is also able to handl e them shoul d be able
to copy a file's data and neta-data with conpl ete transparency from
one location to another; this would inply that nanmes allowed for
regular directory entries are valid for naned attribute nanes as
wel | .

Names of attributes will not be controlled by this docunent or other
| ETF standards track docunents. See the section "I ANA
Consi derati ons” for further discussion.

5.4. dassification of Attributes

Each of the Mandatory and Recommended attributes can be classified in
one of three categories: per server, per filesystem or per
filesystemobject. Note that it is possible that sone per filesystem
attributes may vary within the filesystem See the "honobgeneous"
attribute for its definition. Note that the attributes
time_access_set and tinme_nodify _set are not listed in this section
because they are wite-only attributes corresponding to tinme_access
and tinme_nodify, and are used in a special instance of SETATTR

0 The per server attribute is:
| ease_tinme
o0 The per filesystemattributes are:

supp_attr, fh expire_type, link support, symink support,
uni que_handl es, acl support, cansettine, case_insensitive,

case_preserving, chown_restricted, files_avail, files_free,
files_total, fs_locations, honbgeneous, naxfil esize, naxnane,
maxread, maxwite, no_trunc, space_avail, space_free, space_total

tine_delta
o0 The per filesystemobject attributes are:

type, change, size, nanmed_attr, fsid, rdattr_error, filehandl e,
ACL, archive, fileid, hidden, maxlink, mnetype, node, numnlinks,
owner, owner_group, rawdev, space_used, system tine_access,

ti me_backup, tinme_create, tinme_netadata, tine_nodify,
nounted_on_fileid

For quota_avail _hard, quota_avail_soft, and quota_used see their
definitions below for the appropriate classification

Shepler, et al. St andards Track [Page 38]

RFC 3530 NFS version 4 Protocol April 2003

5.5. Mandatory Attributes - Definitions

Nare # Dat aType Access Description

supp_attr 0 bi t map READ The bit vector which
woul d retrieve all
mandat ory and
reconmended attri butes
that are supported for
this object. The
scope of this
attribute applies to
all objects with a
mat chi ng fsi d.

type 1 nfs4_ftype READ The type of the object
(file, directory,
symink, etc.)

fh_expire_type 2 ui nt 32 READ Server uses this to
specify fil ehandl e
expiration behavior to
the client. See the
section "Fil ehandl es"
for additiona
description.

change 3 ui nt 64 READ A val ue created by the
server that the client
can use to determ ne
if file data,
directory contents or
attributes of the
obj ect have been
nodi fi ed. The server
may return the
object’s tinme_netadata
attribute for this
attribute’s val ue but
only if the filesystem
obj ect can not be
updat ed nore
frequently than the
resol ution of
ti me_met adat a.

si ze 4 ui nt 64 R'W The size of the object
in bytes.

Shepler, et al. St andards Track [Page 39]

RFC 3530 NFS version 4 Protocol April 2003

i nk_support 5 bool READ True, if the object’s
filesystem supports
hard Iinks.

sym i nk_support 6 bool READ True, if the object’s

filesystem supports
synbolic |inks.

named_attr 7 bool READ True, if this object
has naned attributes.
In other words, object
has a non-enpty naned
attribute directory.

fsid 8 fsidd READ Uni que fil esystem
identifier for the
filesystem hol di ng
this object. fsid
contai ns nmaj or and
m nor conponents each
of which are uint64.

uni que_handl es 9 bool READ True, if two distinct
fil ehandl es guarant eed
to refer to two
different filesystem
obj ect s.

| ease_tine 10 nfs | ease4 READ Duration of |eases at
server in seconds.

rdattr_error 11 enum READ Error returned from
getattr during
readdir.

filehandl e 19 nfs fh4 READ The filehandle of this

object (primarily for
readdir requests).

Shepler, et al. St andards Track [Page 40]

RFC 3530

5.6. Recommended Attributes -

Nane

#

NFS version 4 Protoco

Data Type

Definitions

Access

April 2003

Descri ption

ACL

acl support

ar chi ve

cansettine

case_insensitive

case_preserving

chown_restricted

Shepler, et al.

12

13

14

15

16

17

18

nf saced4<>

ui nt 32

bool

bool

bool

bool

bool

St andards Track

R'W

READ

R'W

READ

READ

READ

READ

The access contro
list for the object.

I ndi cat es what types
of ACLs are
supported on the
current fil esystem

True, if this file
has been archived
since the tinme of

| ast nodification
(deprecated in favor
of tinme_backup).

True, if the server
is able to change
the tines for a
filesystem object as
specified in a
SETATTR operati on.

True, if filenane
comparisons on this
filesystem are case
i nsensitive.

True, if filenanme
case on this
filesystemare
preserved.

If TRUE, the server
will reject any
request to change

ei ther the owner or
the group associ at ed
with a fileif the
caller is not a
privileged user (for
exanple, "root" in
UNI X operating
environnents or in
W ndows 2000 the

[Page 41]

RFC 3530

fileid

files_avail

files free

files total

fs_ | ocations

hi dden

honbgeneous

Shepler, et al.

20

21

22

23

24

25

26

NFS version 4 Protoco

ui nt 64

ui nt 64

ui nt 64

ui nt 64

fs_ | ocations

bool

bool

St andards Track

READ

READ

READ

READ

READ

R'W

READ

April 2003

"Take Oanership"
privilege).

A nunber uni quely
identifying the file
within the
filesystem

File slots avail able
to this user on the
filesystem
containing this
object - this should
be the small est
relevant limt.

Free file slots on
the filesystem
containing this
object - this should
be the small est
relevant limt.

Total file slots on
the filesystem
containing this

obj ect.

Locations where this
filesystem nay be
found. If the
server returns
NFS4ERR_MOVED

as an error, this
attri bute MJST be
support ed.

True, if the file is
consi dered hi dden
with respect to the
W ndows API

True, if this
object’s fil esystem
i s honbgeneous,
i.e., are per
filesystem
attributes the sane

[Page 42]

RFC 3530

maxfil esi ze

max| i nk

maxnamne

maxr ead

maxwrite

m net ype

node

no_trunc

Shepler, et al.

27

28

29

30

31

32

33

34

ui nt 64

ui nt 32

ui nt 32

ui nt 64

ui nt 64

ut f 8<>

node4

bool

St andards Track

NFS version 4 Protoco

READ

READ

READ

READ

READ

R'W

R'W

READ

April 2003

for all filesystenis
obj ect s?

Maxi mum support ed
file size for the
filesystemof this
obj ect.

Maxi mum nunber of
links for this
obj ect.

Maxi mum fi | enane
si ze supported for
this object.

Maxi mum read si ze
supported for this
obj ect.

Maxi mumwite size
supported for this
object. This
attribute SHOULD be
supported if the
fileis witable.
Lack of this
attribute can

lead to the client
ei ther wasting
bandwi dt h or not
recei ving the best
per f or mance.

M ME body
type/ subtype of this
obj ect.

UNI X-styl e node and
perm ssion bits for
this object.

True, if a nanme

| onger than name_max
is used, an error be
returned and nane is
not truncated.

[Page 43]

RFC 3530

num i nks

owner

owner _group

quota_avail _hard

quot a_avail _soft

quot a_used

rawdev

space_avai

space_free

Shepler, et al.

35

36

37

38

39

40

41

42

43

NFS version 4 Protoco

ui nt 32

ut f 8<>

ut f 8<>

ui nt 64

ui nt 64

ui nt 64

specdat a4

ui nt 64

ui nt 64

St andards Track

READ

R'W

R'W

READ

READ

READ

READ

READ

READ

April 2003

Nunmber of hard |inks
to this object.

The string name of
the owner of this
obj ect.

The string nane of
t he group ownership
of this object.

For definition see
"Quota Attributes”
section bel ow

For definition see
"Quota Attributes”
section bel ow

For definition see
"Quota Attributes"”
secti on bel ow

Raw devi ce
identifier. UN X
devi ce nmj or/ m nor
node i nfornation
If the val ue of
type is not

NF4BLK or NF4CHR,
the value return
SHOULD NOT be
consi der ed usef ul

Di sk space in bytes
available to this
user on the
filesystem
containing this
object - this should
be the small est
relevant linmt.

Free di sk space in
bytes on the
filesystem
containing this
object - this should

[Page 44]

RFC 3530

space_tota

space_used

system

ti me_access

ti me_access_set

ti me_backup

tinme_create

tinme_delta

Shepler, et al.

44

45

46

47

48

49

50

51

NFS version 4 Prot

ui nt 64

ui nt 64

bool

nf sti me4

settine4

nf sti nme4

nf sti me4

nf sti me4

St andards Track

ocol

READ

READ

R'W

READ

VRI TE

R'W

R'W

READ

April 2003

be the small est
relevant limt.

Total disk space in
bytes on the
filesystem
containing this

obj ect.

Number of fil esystem
bytes all ocated to
this object.

True, if this file
is a "systent file
with respect to the
W ndows API

The time of |ast
access to the object
by a read that was
satisfied by the
server.

Set the tine of |ast
access to the
object. SETATTR
use only.

The time of |ast
backup of the
obj ect.

The tine of creation
of the object. This
attri bute does not
have any relation to
the traditional UN X
file attribute
"ctinme" or "change
time".

Smal | est usef ul

server tine
granularity.

[Page 45]

RFC 3530 NFS version 4 Protocol April 2003

5.

7.

ti me_net adat a 52 nfsti me4 READ The tine of |ast
net a- dat a
nmodi fication of the
obj ect.

tinme_nodify 53 nfsti me4 READ The tine of |ast
nodi fication to the
obj ect.

time_nodi fy_set 54 settined VWRI TE Set the tine of |ast

nodi fication to the
obj ect. SETATTR use

only.
mounted_on_fileid 55 ui nt 64 READ Like fileid, but if
the target

filehandl e is the
root of a filesystem
return the fileid of
t he underlying
directory.

Ti me Access

As defined above, the tine_access attribute represents the tine of

| ast access to the object by a read that was satisfied by the server
The notion of what is an "access" depends on server’s operating
environnment and/or the server’s filesystem semantics. For exanple,
for servers obeying POSI X semantics, tinme_access woul d be updated
only by the READLI NK, READ, and READDI R operations and not any of the
operations that nodify the content of the object. O course, setting
the corresponding tinme_access_set attribute is another way to nodify
the tine_access attribute.

Whenever the file object resides on a witable filesystem the server
shoul d nmake best efforts to record tine_access into stable storage.
However, to mitigate the performance effects of doing so, and nost
especi al | y whenever the server is satisfying the read of the object’s
content fromits cache, the server MAY cache access tinme updates and
lazily wite themto stable storage. It is also acceptable to give
adm nistrators of the server the option to disable tine_access

updat es.

Shepler, et al. St andards Track [Page 46]

RFC 3530 NFS version 4 Protocol April 2003

5.8. Interpreting owner and owner _group

The recomended attributes "owner" and "owner_group" (and al so users
and groups within the "acl" attribute) are represented in terns of a
UTF-8 string. To avoid a representation that is tied to a particular
underlying inplenentation at the client or server, the use of the
UTF-8 string has been chosen. Note that section 6.1 of [RFC2624]
provides additional rationale. It is expected that the client and
server will have their own |ocal representation of owner and

owner _group that is used for local storage or presentation to the end
user. Therefore, it is expected that when these attributes are
transferred between the client and server that the |oca
representation is translated to a syntax of the form

"user @ns_donain". This will allow for a client and server that do
not use the sanme local representation the ability to translate to a
common syntax that can be interpreted by both.

Simlarly, security principals nmay be represented in different ways
by different security nechanisns. Servers nornally translate these
representations into a common format, generally that used by |oca
storage, to serve as a neans of identifying the users corresponding
to these security principals. Wen these local identifiers are
translated to the formof the owner attribute, associated with files
created by such principals they identify, in a common format, the
users associated with each correspondi ng set of security principals.

The translation used to interpret owner and group strings is not
specified as part of the protocol. This allows various solutions to
be enpl oyed. For example, a local translation table nmay be consulted
that maps between a nuneric id to the user@ns_donmi n syntax. A name
service may al so be used to acconplish the translation. A server nmay
provide a nore general service, not limted by any particul ar
translation (which would only translate a limted set of possible
strings) by storing the owner and owner_group attributes in |oca
storage without any translation or it may augnent a translation

met hod by storing the entire string for attributes for which no
translation is available while using the local representation for
those cases in which a translation is avail able.

Servers that do not provide support for all possible values of the
owner and owner _group attributes, should return an error

(NFS4ERR BADOMWNER) when a string is presented that has no

transl at