Internet Engineering Task Force (IETF) M. Chadalapaka

Request for Comments: 7143 Microsoft
Obsoletes: 3720, 3980, 4850, 5048 J. Satran
Updates: 3721 Infinidat Ltd.
Category: Standards Track K. Meth
ISSN: 2070-1721 IBM
D. Black
EMC
April 2014

Internet Small Computer System Interface (iSCSI) Protocol
(Consolidated)

Abstract

This document describes a transport protocol for SCSI that works on

top of TCP. The iSCSI protocol aims to be fully compliant with the
standardized SCSI Architecture Model (SAM-2). RFC 3720 defined the
original iISCSI protocol. RFC 3721 discusses iSCSI nhaming examples
and discovery technigues. Subsequently, RFC 3980 added an additional
naming format to the iISCSI protocol. RFC 4850 followed up by adding

a new public extension key to iSCSI. RFC 5048 offered a number of
clarifications as well as a few improvements and corrections to the
original iISCSI protocol.

This document obsoletes RFCs 3720, 3980, 4850, and 5048 by
consolidating them into a single document and making additional
updates to the consolidated specification. This document also

updates RFC 3721. The text in this document thus supersedes the text
in all the noted RFCs wherever there is a difference in semantics.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7143.

Chadalapaka, et al. Standards Track [Page 1]

RFC 7143 iISCSI (Consolidated) April 2014

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. INtrodUCHIONoeeviiiieiiic e 11
2. Acronyms, Definitions, and Document Summary 11
2.1 ACIONYMS ..ottt 11
2.2. Definitionscoooviiiiiiiie e 13
2.3. Summary of Changesccccccoviiiiiiiiiiiienanennn, 19
2.4, CONVENLIONScovviieiiiiieiee e 20
3. UML CONVENLIONSveveiiieeeriiee et 20
3.1. UML Conventions OVEIVIEWcccvevereeerrerernen 20
3.2. Multiplicity NOtioNnccccoevviiieeiiiieeee 21
3.3. Class Diagram Conventionscccceeeveeeeeennnnn 22
3.4. Class Diagram Notation for Associations 23
3.5. Class Diagram Notation for Aggregations 24
3.6. Class Diagram Notation for Generalizations 25
4, OVEIVIEW ...oeviirieiiieie et 25
4.1. SCSI CONCEPLS ..vvvveeeireeeeeiieiiiiiireeee e 25
4.2.iSCSI Concepts and Functional Overview 26
4.2.1. Layers and SESSIONScccoevviiiiviiieeenenn. 27
4.2.2. Ordering and iSCSI Numberingccccceeeee... 28

4.2.2.1. Command Numbering and Acknowledging 28
4.2.2.2. Response/Status Numbering and
Acknowledgingcccceeevviieeeenns 32
4.2.2.3. Response Orderingccccoecuveeeeenns 32
4.2.2.3.1. Need for Response Ordering32
4.2.2.3.2. Response Ordering Model
Descriptioncccec....... 33
4.2.2.3.3. iISCSI Semantics with
the Interface Model 33
4.2.2.3.4. Current List of Fenced
Response Use Cases 34
4.2.2.4. Data Sequencingcccccuveeeeeeennn. 35

Chadalapaka, et al. Standards Track [Page 2]

RFC 7143 iISCSI (Consolidated) April 2014

4.2.3. iSCSI Task Managementcccccevveeeeennn. 36
4.2.3.1. Task Management Overview 36
4.2.3.2. Notion of Affected Tasks 36

4.2.3.3. Standard Multi-Task Abort Semantics 37
4.2.3.4. FastAbort Multi-Task Abort Semantics 38
4.2.3.5. Affected Tasks Shared across
Standard and FastAbort Sessions 40
4.2.3.6. Rationale behind the FastAbort Semantics ..41
4.2.4.iSCSILOGIN ..ccvvivieiiiiiiee e 42
4.2.5.iSCSI Full Feature Phasecccccccceevinnns 44
4.2.5.1. Command Connection Allegiance 44
4.2.5.2. Data Transfer Overview 45
4.2.5.3. Tags and Integrity Checks 46
4.2.5.4. SCSI Task Management during iSCSI
Full Feature Phasecccccceeeenn. 47
4.2.6. iISCSI Connection Terminationccc........ a7
4.2.7.ISCSINAMES ...ovviiiiiiiieiiiiiiiiiieeeeeeee 47
4.2.7.1. iISCSI Name Propertiesccc........ 48
4.2.7.2.iSCSI Name Encodingccceeeuuens 50
4.2.7.3. iISCSI Name Structurecccuveee 51
4.2.7.4. Type "ign." (ISCSI Qualified Name) 52
4.2.7.5. Type "eui." (IEEE EUI-64 Format) 53
4.2.7.6. Type "naa." (Network Address Authority) ...54
4.2.8. Persistent Stateccccceeevicvieeeeennnen. 55
4.2.9. Message Synchronization and Steering 55
4.2.9.1. Sync/Steering and iSCSI PDU Length 56
4.3. iISCSI Session TYPESccuvvveevriiieeeeriieeee e 56
4.4. SCSI-to-iISCSI Concepts Mapping Model 57
4.4.1. iSCSI Architecture Modelcooeuvnnnnee. 58
4.4.2. SCSI Architecture Modelcccoveeennnen. 59
4.4.3. Consequences of the Modelcccuvveee. 61
4.4.3.1.1_T Nexus Stateccccceeveeerrnnnne 62
4.4.3.2. Reservationsccccccceeeveeiennnnns 63
4.5.iSCSI UML Modelcccccevviiiiiieiiiiiiee i 64
4.6. Request/Response SUMmMArycccccccceeeeeeiiiniinnnns 66
4.6.1. Request/Response Types Carrying SCSI Payload
4.6.1.1. SCSI Commandcc.coeeuvvererrurnnnn. 66
4.6.1.2. SCSI Responsecccccvvvvveeerennn. 66
4.6.1.3. Task Management Function Request 67
4.6.1.4. Task Management Function Response 68
4.6.1.5. SCSI Data-Out and SCSI Data-In 68
4.6.1.6. Ready To Transfer (R2T)cccceeeenne 69
4.6.2. Requests/Responses Carrying SCSI and iSCSI
Payloadcccooviieiiiiiiieiieeee 69
4.6.2.1. Asynchronous Messagecccveeeenne 69

Chadalapaka, et al. Standards Track [Page 3]

RFC 7143 iISCSI (Consolidated) April 2014

4.6.3. Requests/Responses Carrying iSCSI-Only Payload69
4.6.3.1. Text Requests and Text Responses 69
4.6.3.2. Login Requests and Login Responses 70
4.6.3.3. Logout Requests and Logout Responses 71
4.6.3.4. SNACK Requestcccceeveerrveennne 71
4.6.3.5. REJECE ...uvvviriiiiiieeeee i, 71
4.6.3.6. NOP-Out Request and NOP-In Response 71

5. SCSI Mode Parameters for iSCSIccccocvveeeiiiineennnns 72
6. Login and Full Feature Phase Negotiation 72
6.1. Text Format ... 73
6.2. Text Mode Negotiationccccceeerriiiiinrnnnne. 76
6.2.1. List Negotiationscccccvvveveeeeeeennn. 80
6.2.2. Simple-Value Negotiationscccccceeeveenes 80
6.3. Login Phasecccooviiiiiiniiiiie e, 81

6.3.1. Login Phase Startccccceevvivveeeennnne 84

6.3.2. iISCSI Security Negotiationccccccoeee.... 87

6.3.3. Operational Parameter Negotiation during
the Login Phasecccccvveveeeieeeeeei, 87

6.3.4. Connection Reinstatementc.ccceeenee. 88

6.3.5. Session Reinstatement, Closure, and Timeout 89
6.3.5.1. Loss of Nexus Notification 90

6.3.6. Session Continuation and Failure 20

6.4. Operational Parameter Negotiation outside the
Login Phasecccocveveveveeiiiiiiieeeeee, 90
7.iSCSI Error Handling and Recoveryccccccvvvvveeeeeennn. 92
7.1 OVEIVIEW ..ot 92

7.1.1. Backgroundcccooiiiiieiiniiineee 92

7.1.2. G0AlS .coooeiiiiii 92

7.1.3. Protocol Features and State Expectations 93

7.1.4. Recovery ClassSescccvvvveeeieeeeeesieinns 94
7.1.4.1. Recovery Within-command 95
7.1.4.2. Recovery Within-connection 96
7.1.4.3. Connection Recoverycccccueee... 96
7.1.4.4. Session Recoverycccccuvvveeeeen. 97

7.1.5. Error Recovery Hierarchycccccoevines 97

7.2. Retry and Reassign in Recoverycccccvvveeeeenn... 99
7.2.1. Usage of Retrycccoovvvvcviiiiiieeeceeeen 99
7.2.2. Allegiance Reassignmentccccocvveeeene 100
7.3. Usage of Reject PDU in Recoverycccccccceeeeen... 101
7.4. Error Recovery Considerations for Discovery Sessions102

7.4.1. ErrorRecoveryLevel for Discovery Sessions 102

7.4.2. Reinstatement Semantics for Discovery Sessions102
7.4.2.1. Unnamed Discovery Sessions 103
7.4.2.2. Named Discovery Sessions 103

7.4.3. Target PDUs during Discoveryc........ 103

Chadalapaka, et al. Standards Track [Page 4]

RFC 7143 iISCSI (Consolidated) April 2014

7.5. Connection Timeout Managementccccccveeeeeennne 104
7.5.1. Timeouts on Transport Exception Events 104
7.5.2. Timeouts on Planned Decommissioning 104

7.6. Implicit Termination of Tasksccccccceeeeeeenn. 104

7.7. FOormat Errorsoccccvvivieenieeenin, 105

7.8. DIQESL EITOrS ...ovvviiiieieeiee e, 106

7.9. Sequence EIrorscoeevvvevvvveeeeeeeeeeeieeiienens 107

7.10. Message Error Checkingcccccevviivveeennnnn, 108

7.11. SCSI TIMEOULS ... 108

7.12. Negotiation Failurescccoceeeeieeeennnnnnns 109

7.13. ProtoCol EITOrSccccevveiiiiiiieeiiieee e 110

7.14. Connection Failuresccccvcveenieeenieeene 110

7.15. SesSioN EIMorscoceveveieenene e 111

8. State TranSitionNSccccvveeeeeviiiiciiiieeereeee e, 112
8.1. Standard Connection State Diagramscc.c....... 112

8.1.1. State Descriptions for Initiators and Targets112
8.1.2. State Transition Descriptions for

Initiators and Targetsccccvvvvneeen. 114
8.1.3. Standard Connection State Diagram for an
T 1 (=1 (o] U 118

8.1.4. Standard Connection State Diagram for a Target120
8.2. Connection Cleanup State Diagram for Initiators

and Targetscccouveeeeeeiieeieeeeeee e 122

8.2.1. State Descriptions for Initiators and Targets124

8.2.2. State Transition Descriptions for

Initiators and Targetsccoccveeeennnen 124
8.3. Session State Diagramscccceeevriiveeeennninnn. 126
8.3.1. Session State Diagram for an Initiator 126
8.3.2. Session State Diagram for a Target 127

8.3.3. State Descriptions for Initiators and Targets129
8.3.4. State Transition Descriptions for

Initiators and Targetscccoccveeeennee 129
9. Security Considerationscccoovvveeeeeiniieeeennnns 131
9.1. iSCSI Security Mechanismscccccceveeeeeiiinnne 132
9.2. In-Band Initiator-Target Authentication 132
9.2.1. CHAP Considerationsccccccvevevriunnnnn. 134
9.2.2. SRP Considerationsccccovvvveeernnenne 136
9.2.3. Kerberos Considerationsccccuveeee. 136
9.3, IPSEC ettt 137
9.3.1. Data Authentication and Integrity 137
9.3.2. Confidentialityccccuvviiieeenennenn. 138
9.3.3. Policy, Security Associations, and
Cryptographic Key Management 139
9.4. Security Considerations for the X#NodeArchitecture Key ...141
9.5. SCSI Access Control Considerations 143

Chadalapaka, et al. Standards Track [Page 5]

RFC 7143 iISCSI (Consolidated) April 2014

10. Notes to Implementerscccccoevvcvvvveeeeeeeeeennnn, 143
10.1. Multiple Network Adaptersccccvvvvveeeennnne. 143
10.1.1. Conservative Reuse of ISIDSccccceeeeee... 143
10.1.2. iSCSI Name, ISID, and TPGT Use€ccccceneee. 144
10.2. Autosense and Auto Contingent Allegiance (ACA) 146
10.3. ISCSI TIMEOULScovveerieieiiiee e 146
10.4. Command Retry and Cleaning Old Command Instances
10.5. Sync and Steering Layer, and Performance 147
10.6. Considerations for State-Dependent Devices and
Long-Lasting SCSI Operationscccccceeeeeeinnnnee 147
10.6.1. Determining the Proper ErrorRecoveryLevel 148
10.7. Multi-Task Abort Implementation Considerations 149
11. iISCSI PDU FOIMAtScoccvveeeiniiiiieeiiiiieee e 150
11.1.iSCSI PDU Length and Paddingc..ccccveeeennns 150
11.2. PDU Template, Header, and Opcodescccc...... 150
11.2.1. Basic Header Segment (BHS)ccee.. 152
11.2.1.1. | (Immediate) Bitccevveeeee. 152
11.2.1.2. Opcodeccoovvviiiiiiiieeeeeeen, 152
11.2.1.3. F (Final) Bitcocoveviviiiineene 154
11.2.1.4. Opcode-Specific Fields 154
11.2.1.5. TotalAHSLengthccccevierennen. 154
11.2.1.6. DataSegmentLength 154
11.2.2.7. LUN oo 154
11.2.1.8. Initiator Task Tagccccvvvveeen. 154
11.2.2. Additional Header Segment (AHS) 155
11.2.2.1. AHSTYPE ..o 155
11.2.2.2. AHSLengthcocciiiiii 155
11.2.2.3. Extended CDB AHSccccevneens 156
11.2.2.4. Bidirectional Read Expected Data
Transfer Length AHS 156
11.2.3. Header Digest and Data Digest 156
11.2.4. Data Segmentccccvvveeeeeieeeenninnnnns 157
11.3. SCSI Commandccccuvvreiieeiiaeeeeeeeeeieeee 158
11.3.1. Flags and Task Attributes (Byte 1) 159
11.3.2. CmdSN - Command Sequence Number 159
11.3.3. EXPStatSN ...ccoveiiiiiiieeee e, 160
11.3.4. Expected Data Transfer Length 160
11.3.5. CDB - SCSI Command Descriptor Block 160
11.3.6. Data Segment - Command Data 161
11.4. SCSI RESPONSEovvviiiiiiiiiiiaeaaae e 161
11.4.1. Flags (Byte 1) ..ccceeeeeiiiiiiiiiiiceeeeeeenn, 162
11.4.2. SEALUS ..oooveeeiieeeeieeeee e 163
11.4.3. RESPONSE ..ccoevvvveieveeeeeeeeeeeeeeeeeeenes 163
11.4.4, SNACK TAQ .oivvvveeeeeininiinriinniiinnnanaeeenns 164

Chadalapaka, et al. Standards Track [Page 6]

RFC 7143 iISCSI (Consolidated) April 2014

11.4.5. Residual Countccceevvveiinerennnnnn 164
11.4.5.1. Field Semanticsccccceceeevrennes 164
11.4.5.2. Residuals Concepts Overview 164
11.4.5.3. SCSI REPORT LUNS Command and
Residual Overflowccoeeee.. 165
11.4.6. Bidirectional Read Residual Count 166
11.4.7. Data Segment - Sense and Response Data Segment ...167
11.4.7.1. SenseLengthccccooiiieeens 167
11.4.7.2. Sense Datacoceevvvevennnnnee 168
11.4.8. EXpDataSNccccoceiiiiiiiiniieeiieeen 168
11.4.9. StatSN - Status Sequence Number 168
11.4.10. ExpCmdSN - Next Expected CmdSN from This
INIGIALOT ... 169
11.4.11. MaxCmdSN - Maximum CmdSN from This Initiator169
11.5. Task Management Function Requestc.co....... 170
11.5.2. FUNCHION oo 170
11.5.2. TotalAHSLength and DataSegmentLength 173
1153 LUN Lo 173
11.5.4. Referenced Task Tagcccvveeeeevieiinnnnnen. 173
11.5.5. RefCMASNcccvviviieiieeee e 174
11.5.6. ExpDataSNccccoociiiiiiiniiieiieeen 174
11.6. Task Management Function Responseccc.c.... 175
11.6.1. RESPONSE ...cooiiiieiiieeieeeeeeeeeeeeeae 176
11.6.2. TotalAHSLength and DataSegmentLength 177
11.7. SCSI Data-Out and SCSI Data-Inccccccovernee. 178
11.7.1. F (Final) Bitcoooveeeeeeeeeeeerererenennn 180
11.7.2. A (Acknowledge) Bitcccoeevveieeinnnnn. 180
11.7.3. Flags (Byte 1) ..ccceeeeeiiiiiiiiiiiieeeeeeenn, 181
11.7.4. Target Transfer Tag and LUN 181
11.7.5. DataSNccoovveiiiieieee e 182
11.7.6. Buffer Offsetcccocvveviveiiieiennn, 182
11.7.7. DataSegmentLengthcccceeeeiniiiennens 182
11.8. Ready To Transfer (R2T) ...ccceeevviiieeeeniiiieeeens 183
11.8.1. TotalAHSLength and DataSegmentLength 184
11.8.2. R2TSN ..etiiiiiieeeiiee e 184
11.8.3. StatSN ...ooviiiiiiiie e 185
11.8.4. Desired Data Transfer Length and Buffer Offset ...185
11.8.5. Target Transfer Tagccccoovvveeeenninnenn. 185
11.9. Asynchronous MeSSagecccoevuvveeeriivieeeennnnn 186
11.9.1. AsyncEventccccceieiiiiiiiiii 187
11.9.2. ASyNcVCOdEcceeeeiiiiiiiiiiiiieeieeeenn, 189
11.9.3. LUN i 189
11.9.4. Sense Data and iSCSI Event Data 190
11.9.4.1. SenseLengthccccoiiieeens 190

Chadalapaka, et al. Standards Track [Page 7]

RFC 7143 iISCSI (Consolidated) April 2014

11.10. TeXt REQUEST ...uuvieeiieieie e, 191
11.10.1. F (Final) Bitcccovveeeeeererererenne 192
11.10.2. C (Continue) Bitooeveviiiiiiieiinen. 192
11.10.3. Initiator Task Tagcccecvvvvereeeeeeannnn. 192
11.10.4. Target Transfer Tagcccccceeeeeererninnnnns 192
11.10.5. TeXE coviieiiieiiee e 193

11.11. TeXt RESPONSEccvvvveeeevereirnininiieananen s 194
11.11.1. F (Final) Bitcocveveeeeecerevereee 194
11.11.2. C (Continue) Bitceeveviiiiiiieien. 195
11.11.3. Initiator Task Tagcocevvvvveeeeeeeannnn. 195
11.11.4. Target Transfer Tagcccccceeeeeereininnnns 195
11.11.5. StatSN ..oooviieiiiieieeee e 196
11.11.6. Text Response Datacevvvvevnnnnnnn. 196

11.12. Login REQUEST ...cceviiiiiieeiiieeee e 196
11.12.1. T (Transit) Bitcccooeeeiieeiiieeeiieee 197
11.12.2. C (Continue) Bitcceevieieiiiiiiiinnns 197
11.12.3. CSG and NSGcccceeriiieiiiieenieeenn 198
11.12.4. VEISION ..ooviviiiieiieeiieeeee e 198

11.12.4.1. VErsion-mMaxcccoeervererinnnns 198

11.12.4.2. Version-minccccceeeeereriiennnns 198
11.12.5.ISID i 199
11.12.6. TSIH oo 200
11.12.7. Connection ID (CID)ccvvvveeeeeeeeeennnns 200
11.12.8. CMASN ...ovviiiiiiieeecee e 201
11.12.9. EXPStatSNcvvvvviiiiiiiiiinieieeeeeeeeenn, 201
11.12.10. Login Parametersccccoeevveeernnunnen. 201

11.13. LOgin RESPONSEoeveiiiiiiieiiiiiieee et 202
11.13.2. Version-MaXeeeeeeeeeeeiesiiiennienneen 202
11.13.2. Version-activecccoccvveeeeriirneeeenns 203
11.13.3. TSIH oo 203
11.13.4. StAtSN ..ooovveeiieieeeeee e 203
11.13.5. Status-Class and Status-Detail 203
11.13.6. T (Transit) Bitccceeevieeiiieeeiiee 206
11.13.7. C (Continue) Bitcceevieieiiiiiiiiinnns 206
11.13.8. Login Parametersccccceeeeeeeeeeinnnns 207

11.14. Logout REqUESLcoeviviiiiiiieeieeiiii e, 207
11.14.1. Reason Codecccocovernveerirereriinnenns 209
11.14.2. TotalAHSLength and DataSegmentLength
11.14.3. CID eeeeeiiee e 210
11.14.4. EXpSEatSNoooiiiiiiiiieee e, 210
11.14.5. Implicit Termination of Tasks 210

11.15. LOogout RESPONSEccvvvviiiiiiiiiiiiieeeeeiiiiieee s 211
11.15.1. RESPONSE ..ccovvvveveeeeeeiveveininnne e 212
11.15.2. TotalAHSLength and DataSegmentLength
11.15.3. TiIMe2Waltcccceviiiieeiiieeiieeeiieenne 212
11.15.4. Time2Retainccccoevviiiviiiiiieeneeen, 212

Chadalapaka, et al. Standards Track [Page 8]

RFC 7143 iISCSI (Consolidated) April 2014

11.16. SNACK Requestcccvvvvveviveeeeeeeeeieieiineenens 213
11.16.1. TYPE v 214
11.16.2. Data Acknowledgmentcccccveeeennnn 215
11.16.3. Resegmentationccccooeveuvvvvnnenenn. 215
11.16.4. Initiator Task Tagcccecvvvvvreeeeeennnnn. 216
11.16.5. Target Transfer Tag or SNACK Tag 216
11.16.6. BEGRUNovvviiiiciiicieie e, 216
11.16.7. RunLengthcccccoviiiiiiiiiiiee 216

11.27. REJECL v 217
11.17.1. REASON ..ouvueiiiiiiieieeiee e 218
11.17.2. DataSN/R2TSNcccoviiiiiiiiiieeeeeiineeen, 219

11.17.3. StatSN, ExpCmdSN, and MaxCmdSN 219

11.17.4. Complete Header of Bad PDU 219
11.18. NOP-OUL ..o 220
11.18.1. Initiator Task Tagccovveeerrvieeeennns 221
11.18.2. Target Transfer Tagccccceeeeeereeninnnns 221
11.18.3. Ping Dataccceeeeeeieeeiiiiiiiiiiinee, 221
11.19. NOP-IN vt 222
11.19.1. Target Transfer Tagcccccevvveeeeveiiinnnnns 223
11.19.2. StatSN ..oooveiieieee e 223
11.19.3. LUN ..o 223
12. iSCSI Security Text Keys and Authentication Methods
12.1. AuthMethodcccoooiiiiiiiiiiicee e 224
12.1.1. Kerberoscccocvveiviiiieeeiiiieee e 226
12.1.2. Secure Remote Password (SRP)cccccceveeenn. 226
12.1.3. Challenge Handshake Authentication
Protocol (CHAP) ..., 228
13. Login/Text Operational Text Keyscccccovriuurnnnen. 229
13.1. HeaderDigest and DataDigestccccccceeviiinnes 230
13.2. MaxConnecCtioNScceevvevvieeeiiiieeee e 232
13.3. SendTargetscocccvvvvvverereeeee e 232
13.4. TargetNamecccooovviiiiiiiieeieeeeee s 232
13.5. InitiatorNameccccoveeviiiiiiieceeee e 233
13.6. TargetAliasccccvvvieeeieiieeeiiieeeee 233
13.7. InitiatorAliasoooocvviieieiiiieeees 234
13.8. TargetAddressccccvvveeeeeeeeeee e, 234
13.9. TargetPortalGroupTagccveevereeeeeerinircnrnnnn 235
13.10. INitialR2T ..eeveveiieeie e 236
13.11. ImmediateDataccoecvviieieiiieeeeeees 236
13.12. MaxRecvDataSegmentLengthccccceeeeeeieennnn. 237
13.13. MaxBurstLengthcccccccoiiiiiiiiiiiennnenn, 238
13.14. FirstBurstLengthcccccoiviieeieeeeeeies 238
13.15. DefaultTime2Waitccoccveeeivnieneennnnen. 239
13.16. DefaultTime2Retaincccccvvvveeiereneeennnnn 239
13.17. MaxOutstandingR2Tcccocceveiiniiieeeennne 239
13.18. DataPDUINOrderccccuviiieeiiiiieeeeeeias 240
13.19. DataSequencelnNOrderccccceeevinvivvnnieneenn. 240
13.20. ErrorRecoveryLevelccccccvvvvveeeeeeeeeennn 241

Chadalapaka, et al. Standards Track [Page 9]

RFC 7143 iISCSI (Consolidated) April 2014

13.21. SESSIONTYPE .eevvviirieeiieeee e e e ceenrreeeeer e e e 241
13.22. The Private Extension Key Formatcc..e.... 242
13.23. TaskReportingcccceevvveeereniiiieeeeniieennn 242
13.24. iISCSIProtocolLevel Negotiationccceees 243
13.25. Obsoleted Keysooooiviiiiieiiiieeiniins 243
13.26. X#NodeArchiteCtureccocvvevveeinierennen. 244
13.26.1. Definitionccccooevveiiiiiiiienneene 244
13.26.2. Implementation Requirements 244
14. Rationale for Revised IANA Considerations 245
15. IANA Considerationscccvveeeeeeeeeennniiciinine. 246
16. REfErencesccccvvevviieie i 248
16.1. Normative Referencescoccvcveinivriiieene 248
16.2. Informative Referencescccccecvvivierennnen. 251
Appendix A. EXamples ... 254
A.1. Read Operation Exampleccccccovvvieirenniinnenn. 254
A.2. Write Operation Examplecccooiiiiiiiiieeennnnnn. 255
A.3. R2TSN/DataSN Use Examplesccccoceeeeeeeernninnnns 256
A.3.1. Output (Write) Data DataSN/R2TSN Example 256
A.3.2. Input (Read) Data DataSN Example 257
A.3.3. Bidirectional DataSN Examplecc.ccueeen. 258
A.3.4. Unsolicited and Immediate Output (Write) Data
with DataSN Exampleccoccceeeenn. 259
A.4. CRC Examplesccccviiiiiiiiiieiiiiiee 259
Appendix B. Login Phase Examplesccccvvvveeeeennnn. 261
Appendix C. SendTargets Operationccccccevveeeereiiinnns 268
Appendix D. Algorithmic Presentation of Error Recovery
ClasSeSuuvviiiieeieiieee e 272
D.1. General Data Structure and Procedure Description 273
D.2. Within-command Error Recovery Algorithms 274
D.2.1. Procedure Descriptionsc.ccccceeeevvnnnee. 274
D.2.2. Initiator Algorithmscccccvvevveneennnn. 275
D.2.3. Target Algorithmsccccccevviiierennnnnnn, 277
D.3. Within-connection Recovery Algorithms 279
D.3.1. Procedure Descriptionscccccceeviuevnnen. 279
D.3.2. Initiator Algorithmsccccceeiiiennnnn. 280
D.3.3. Target Algorithmscccocceeveeeeeiniinns 283
D.4. Connection Recovery Algorithmscccccceveeeeeenn, 283
D.4.1. Procedure DescCriptionsccccceevviveeeeenns 283
D.4.2. Initiator AlQorithmsccccceevviiieeeennins 284
D.4.3. Target Algorithmsccccceiiiiiiiinnns 286
Appendix E. Clearing Effects of Various Events on Targets 288
E.1. Clearing Effects on iSCSI Objectsccc.ccceevnns 288
E.2. Clearing Effects on SCSI Objectsccccvvvveeeennn. 293
Acknowledgmentsccoocueeeieiiiiieiee e 294

Chadalapaka, et al. Standards Track [Page 10]

RFC 7143 iISCSI (Consolidated) April 2014

1. Introduction

The Small Computer System Interface (SCSI) is a popular family of
protocols for communicating with I/O devices, especially storage
devices. SCSIl is a client-server architecture. Clients of a SCSI
interface are called "initiators". Initiators issue SCSI "commands"

to request services from components -- logical units of a server
known as a "target". A "SCSI transport" maps the client-server SCSI
protocol to a specific interconnect. An initiator is one endpoint of

a SCSI transport, and a target is the other endpoint.

The SCSI protocol has been mapped over various transports, including
Parallel SCSI, Intelligent Peripheral Interface (IPI), IEEE 1394
(FireWire), and Fibre Channel. These transports are I/O-specific and
have limited distance capabilities.

The iSCSI protocol defined in this document describes a means of
transporting SCSI packets over TCP/IP, providing for an interoperable
solution that can take advantage of existing Internet infrastructure,
Internet management facilities, and address distance limitations.

2. Acronyms, Definitions, and Document Summary

2.1. Acronyms

Acronym Definition

3DES Triple Data Encryption Standard
ACA Auto Contingent Allegiance

AEN Asynchronous Event Notification

AES Advanced Encryption Standard

AH Additional Header (not the IPsec AH!)

AHS Additional Header Segment

API Application Programming Interface

ASC Additional Sense Code

ASCII American Standard Code for Information Interchange

ASCQ Additional Sense Code Qualifier

ATA AT Attachment

BHS Basic Header Segment

CBC Cipher Block Chaining

CD Compact Disk

CDB Command Descriptor Block

CHAP Challenge Handshake Authentication Protocol
CID Connection ID

CO Connection Only
CRC Cyclic Redundancy Check
CRL Certificate Revocation List

CSG Current Stage

Chadalapaka, et al. Standards Track [Page 11]

RFC 7143

CSM
DES
DNS
DOI
DVD
EDTL
ESP
EUI
FFP
FFPO
HBA
HMAC
I T
| TL
IANA
IB

ID
IDN
IEEE
IETF
IKE
/O
10

IP
IPsec
IPv4
IPv6
IQN
iISCSI
iISER
ISID
iISNS
ITN
ITT
KRB5
LFL
LTDS
LO
LU
LUN
MAC
NA
NAA
NIC
NOP
NSG
OCSP
oS

iISCSI (Consolidated) April 2014

Connection State Machine
Data Encryption Standard
Domain Name Server
Domain of Interpretation
Digital Versatile Disk
Expected Data Transfer Length
Encapsulating Security Payload
Extended Unique Identifier
Full Feature Phase
Full Feature Phase Only
Host Bus Adapter
Hashed Message Authentication Code
Initiator_Target
Initiator_Target_LUN
Internet Assigned Numbers Authority
InfiniBand
Identifier
Internationalized Domain Name
Institute of Electrical and Electronics Engineers
Internet Engineering Task Force
Internet Key Exchange
Input-Output
Initialize Only
Internet Protocol
Internet Protocol Security
Internet Protocol Version 4
Internet Protocol Version 6
iISCSI Qualified Name
Internet SCS
iISCSI Extensions for RDMA (see [RFC7145])
Initiator Session ID
Internet Storage Name Service (see [RFC4171])
iSCSI Target Name
Initiator Task Tag
Kerberos V5
Lower Functional Layer
Logical-Text-Data-Segment
Leading Only
Logical Unit
Logical Unit Number
Message Authentication Code
Not Applicable
Network Address Authority
Network Interface Card
No Operation
Next Stage
Online Certificate Status Protocol
Operating System

Chadalapaka, et al. Standards Track [Page 12]

RFC 7143 iISCSI (Consolidated) April 2014

PDU Protocol Data Unit

PKI Public Key Infrastructure

R2T Ready To Transfer

R2TSN Ready To Transfer Sequence Number
RDMA Remote Direct Memory Access
RFC Request For Comments

SA Security Association

SAM SCSI Architecture Model
SAM-2 SCSI Architecture Model - 2
SAN Storage Area Network

SAS Serial Attached SCSI

SATA Serial AT Attachment

SCSI Small Computer System Interface
SLP Service Location Protocol
SN Sequence Number

SNACK Selective Negative Acknowledgment - also

Sequence Number Acknowledgement for data
SPDTL SCSI-Presented Data Transfer Length
SPKM Simple Public-Key Mechanism

SRP Secure Remote Password
SSID Session ID

SW Session-Wide

TCB Task Control Block

TCP Transmission Control Protocol
TMF Task Management Function

TPGT Target Portal Group Tag

TSIH Target Session Identifying Handle
TTT Target Transfer Tag

UA Unit Attention

UFL Upper Functional Layer

ULP Upper Level Protocol

URN Uniform Resource Name
UTF Universal Transformation Format
WG Working Group

2.2. Definitions

- Alias: An alias string can also be associated with an iSCSI node.
The alias allows an organization to associate a user-friendly
string with the iISCSI name. However, the alias string is not a
substitute for the iSCSI name.

- CID (connection ID): Connections within a session are identified by
a connection ID. It is a unique ID for this connection within the
session for the initiator. It is generated by the initiator and
presented to the target during Login Requests and during logouts
that close connections.

Chadalapaka, et al. Standards Track [Page 13]

RFC 7143 iISCSI (Consolidated) April 2014

- Connection: A connection is a TCP connection. Communication
between the initiator and target occurs over one or more TCP
connections. The TCP connections carry control messages, SCSI
commands, parameters, and data within iISCSI Protocol Data Units
(ISCSI PDUs).

- I/O Buffer: An I/O Buffer is a buffer that is used in a SCSI read
or write operation so SCSI data may be sent from or received into
that buffer. For a read or write data transfer to take place for a
task, an I/O Buffer is required on the initiator and at least one
is required on the target.

- INCITS: "INCITS" stands for InterNational Committee for Information
Technology Standards. The INCITS has a broad standardization scope
within the field of Information and Communications Technologies
(ICT), encompassing storage, processing, transfer, display,
management, organization, and retrieval of information. INCITS
serves as ANSI’s Technical Advisory Group for the ISO/IEC Joint
Technical Committee 1 (JTC 1). See <http://www.incits.org>.

- InfiniBand: InfiniBand is an I/O architecture originally intended
to replace Peripheral Component Interconnect (PCl) and address
high-performance server interconnectivity [IB].

- iISCSI Device: An iSCSI device is a SCSI device using an iSCSI
service delivery subsystem. The Service Delivery Subsystem is
defined by [SAMZ2] as a transport mechanism for SCSI commands and
responses.

- iISCSI Initiator Name: The iSCSI Initiator Name specifies the
worldwide uniqgue name of the initiator.

- iISCSI Initiator Node: An iSCSI initiator node is the "initiator"
device. The word "initiator" has been appropriately qualified as
either a port or a device in the rest of the document when the
context is ambiguous. All unqualified usages of "initiator" refer
to an initiator port (or device), depending on the context.

- iISCSI Layer: This layer builds/receives iSCSI PDUs and
relays/receives them to/from one or more TCP connections that form
an initiator-target "session".

- iISCSI Name: This is the name of an iSCSI initiator or iISCSI target.
- iISCSI Node: The iSCSI node represents a single iSCSI initiator or
iISCSI target, or a single instance of each. There are one or more

iISCSI nodes within a Network Entity. The iSCSI node is accessible
via one or more Network Portals. An iSCSI node is identified by

Chadalapaka, et al. Standards Track [Page 14]

RFC 7143 iISCSI (Consolidated) April 2014

its iISCSI name. The separation of the iISCSI name from the
addresses used by and for the iISCSI node allows multiple iISCSI
nodes to use the same address and the same iSCSI node to use
multiple addresses.

- iISCSI Target Name: The iSCSI Target Name specifies the worldwide
unigue name of the target.

- iISCSI Target Node: The iSCSI target node is the "target" device.
The word "target" has been appropriately qualified as either a port
or a device in the rest of the document when the context is
ambiguous. All unqualified usages of "target" refer to a target
port (or device), depending on the context.

- iISCSI Task: An iSCSI task is an iSCSI request for which a response
is expected.

- ISCSI Transfer Direction: The iSCSI transfer direction is defined
with regard to the initiator. Outbound or outgoing transfers are
transfers from the initiator to the target, while inbound or
incoming transfers are from the target to the initiator.

- ISID: The ISID is the initiator part of the session identifier. It
is explicitly specified by the initiator during login.

- |_T Nexus: According to [SAM2], the I_T nexus is a relationship
between a SCSI initiator port and a SCSI target port. For iSCSI,
this relationship is a session, defined as a relationship between
an iSCSI initiator’s end of the session (SCSI initiator port) and
the iSCSI target’s portal group. The |_T nexus can be identified
by the conjunction of the SCSI port names; that is, the |_T nexus
identifier is the tuple (iISCSI Initiator Name +,i,” + ISID, iSCSI
Target Name + 't + Target Portal Group Tag).

-I_T_L Nexus: An I_T_L nexus is a SCSI concept and is defined as the
relationship between a SCSI initiator port, a SCSI target port, and
a Logical Unit (LU).

- NAA: "NAA" refers to Network Address Authority, a naming format
defined by the INCITS T11 Fibre Channel protocols [FC-FS3].

- Network Entity: The Network Entity represents a device or gateway
that is accessible from the IP network. A Network Entity must have
one or more Network Portals, each of which can be used to gain
access to the IP network by some iSCSI nodes contained in that
Network Entity.

Chadalapaka, et al. Standards Track [Page 15]

RFC 7143 iISCSI (Consolidated) April 2014

- Network Portal: The Network Portal is a component of a Network
Entity that has a TCP/IP network address and that may be used by an
iISCSI node within that Network Entity for the connection(s) within
one of its iISCSI sessions. A Network Portal in an initiator is
identified by its IP address. A Network Portal in a target is
identified by its IP address and its listening TCP port.

Originator: In a negotiation or exchange, the originator is the
party that initiates the negotiation or exchange.

PDU (Protocol Data Unit): The initiator and target divide their
communications into messages. The term "iSCSI Protocol Data Unit"
(iISCSI PDU) is used for these messages.

Portal Groups: iSCSI supports multiple connections within the same
session; some implementations will have the ability to combine
connections in a session across multiple Network Portals. A portal
group defines a set of Network Portals within an iISCSI Network
Entity that collectively supports the capability of coordinating a
session with connections spanning these portals. Not all Network
Portals within a portal group need participate in every session
connected through that portal group. One or more portal groups may
provide access to an iISCSI node. Each Network Portal, as utilized
by a given iSCSI node, belongs to exactly one portal group within
that node.

Portal Group Tag: This 16-bit quantity identifies a portal group
within an iISCSI node. All Network Portals with the same Portal
Group Tag in the context of a given iISCSI node are in the same
portal group.

Recovery R2T: A recovery R2T is an R2T generated by a target upon
detecting the loss of one or more Data-Out PDUs through one of the
following means: a digest error, a sequence error, or a sequence
reception timeout. A recovery R2T carries the next unused R2TSN
but requests all or part of the data burst that an earlier R2T

(with a lower R2TSN) had already requested.

Responder: In a negotiation or exchange, the responder is the party
that responds to the originator of the negotiation or exchange.

SAS: The Serial Attached SCSI (SAS) standard contains both a

physical layer compatible with Serial ATA, and protocols for

transporting SCSI commands to SAS devices and ATA commands to SATA
devices [SAS] [SPL].

Chadalapaka, et al. Standards Track [Page 16]

RFC 7143 iISCSI (Consolidated) April 2014

- SCSI Device: This is the SAM-2 term for an entity that contains one
or more SCSI ports that are connected to a service delivery
subsystem and supports a SCSI application protocol. For example, a
SCSl initiator device contains one or more SCSI initiator ports and
zero or more application clients. A target device contains one or
more SCSI target ports and one or more device servers and
associated LUs. ForiSCSI, the SCSI device is the component within
an iSCSI node that provides the SCSI functionality. As such, there
can be at most one SCSI device within a given iSCSI node. Access
to the SCSI device can only be achieved in an iISCSI Normal
operational session. The SCSI device name is defined to be the
iISCSI name of the node.

SCSI Layer: This builds/receives SCSI CDBs (Command Descriptor
Blocks) and relays/receives them with the remaining Execute Command
[SAM2] parameters to/from the iISCSI Layer.

Session: The group of TCP connections that link an initiator with a
target form a session (loosely equivalent to a SCSI |_T nexus).

TCP connections can be added and removed from a session. Across
all connections within a session, an initiator sees one and the

same target.

SCSI Port: This is the SAM-2 term for an entity in a SCSI device
that provides the SCSI functionality to interface with a service
delivery subsystem. For iSCSI, the definitions of the SCSI
initiator port and the SCSI target port are different.

SCSI Initiator Port: This maps to the endpoint of an iISCSI Normal
operational session. An iSCSI Normal operational session is
negotiated through the login process between an iSCSI initiator
node and an iSCSI target node. At successful completion of this
process, a SCSI initiator port is created within the SCSI initiator
device. The SCSI initiator port name and SCSI initiator port
identifier are both defined to be the iISCSI Initiator Name together
with (a) a label that identifies it as an initiator port

name/identifier and (b) the ISID portion of the session identifier.

SCSI Port Name: This is a name consisting of UTF-8 [RFC3629]
encoding of Unicode [UNICODE] characters and includes the iSCSI
name + i’ or 't’ + ISID or Target Portal Group Tag.

SCSI-Presented Data Transfer Length (SPDTL): SPDTL is the aggregate
data length of the data that the SCSI layer logically "presents" to

the iSCSI layer for a Data-In or Data-Out transfer in the context

of a SCSl task. For a bidirectional task, there are two SPDTL

values -- one for Data-In and one for Data-Out. Note that the

notion of "presenting” includes immediate data per the data

Chadalapaka, et al. Standards Track [Page 17]

RFC 7143 iISCSI (Consolidated) April 2014

transfer model in [SAM2] and excludes overlapping data transfers,
if any, requested by the SCSI layer.

SCSI Target Port: This maps to an iSCSI target portal group.

SCSI Target Port Name and SCSI Target Port Identifier: These are
both defined to be the iISCSI Target Name together with (a) a label
that identifies it as a target port name/identifier and (b) the

Target Portal Group Tag.

SSID (Session ID): A session between an iSCSI initiator and an
iISCSI target is defined by a session ID that is a tuple composed of

an initiator part (ISID) and a target part (Target Portal Group

Tag). The ISID is explicitly specified by the initiator at session
establishment. The Target Portal Group Tag is implied by the
initiator through the selection of the TCP endpoint at connection
establishment. The TargetPortalGroupTag key must also be returned
by the target as a confirmation during connection establishment.

T10: T10 is a technical committee within INCITS that develops
standards and technical reports on I/O interfaces, particularly the
series of SCSI (Small Computer System Interface) standards. See
<http://www.t10.0rg>.

T11: T11 is a technical committee within INCITS responsible for
standards development in the areas of Intelligent Peripheral
Interface (IPI), High-Performance Parallel Interface (HIPPI), and
Fibre Channel (FC). See <http://www.t11.0rg>.

Target Portal Group Tag: This is a numerical identifier (16-bit)
for an iSCSI target portal group.

Target Transfer Tag (TTT): The TTT is an iSCSI protocol field used
in a few iISCSI PDUs (e.g., R2T, NOP-In) that is always sent from
the target to the initiator first and then quoted as a reference in
initiator-sent PDUs back to the target relating to the same
task/exchange. Therefore, the TTT effectively acts as an opaque
handle to an existing task/exchange to help the target associate
the incoming PDUs from the initiator to the proper execution
context.

Third-party: This term is used in this document as a qualifier to
nexus objects (I_T or |_T_L) and iSCSI sessions, to indicate that
these objects and sessions reap the side effects of actions that

take place in the context of a separate iSCSI session. One example
of a third-party session is an iSCSI session discovering that its
I_T_L nexus to a LU got reset due to a LU reset operation
orchestrated via a separate |_T nexus.

Chadalapaka, et al. Standards Track [Page 18]

RFC 7143 iISCSI (Consolidated) April 2014

- TSIH (Target Session Identifying Handle): This is a target-assigned
tag for a session with a specific named initiator. The target
generates it during session establishment. Other than defining it
as a 16-bit binary string, its internal format and content are not
defined by this protocol but for the value with all bits setto O
that is reserved and used by the initiator to indicate a new
session. lItis given to the target during additional connection
establishment for the same session.

2.3. Summary of Changes

1) Consolidated RFCs 3720, 3980, 4850, and 5048, and made the
necessary editorial changes.

2) Specified iISCSIProtocolLevel as "1" in Section 13.24 and added a
related normative reference to [RFC7144].

3) Removed markers and related keys.
4) Removed SPKM authentication and related keys.
5) Added a new Section 13.25 on responding to obsoleted keys.

6) Have explicitly allowed initiator+target implementations
throughout the text.

7) Clarified in Section 4.2.7 that implementations SHOULD NOT rely
on SLP-based discovery.

8) Added Unified Modeling Language (UML) diagrams and related
conventions in Section 3.

9) Made FastAbort implementation a "SHOULD" requirement in
Section 4.2.3.4, rather than the previous "MUST" requirement.

10) Required in Section 4.2.7.1 that iISCSI Target Name be the same as
iISCSI Initiator Name for SCSI (composite) devices with both
roles.

11) Changed the "MUST NOT" to "should be avoided" in Section 4.2.7.2
regarding usage of characters such as punctuation marks in iSCSI
names.

12) Updated Section 9.3 to require the following: MUST implement

IPsec, 2400-series RFCs (IPsec v2, IKEv1); and SHOULD implement
IPsec, 4300-series RFCs (IPsec v3, IKEV2).

Chadalapaka, et al. Standards Track [Page 19]

RFC 7143 iISCSI (Consolidated) April 2014

13) Clarified in Section 10.2 that ACA is a "SHOULD" only for iSCSI
targets.

14) Prohibited usage of X# name prefix for new public keys in
Section 6.2.

15) Prohibited usage of Y# name prefix for new digest extensions in
Section 13.1 and Z# name prefix for new authentication method
extensions in Section 12.1.

16) Added a "SHOULD" in Section 6.2 that initiators and targets
support at least six (6) exchanges during text negotiation.

17) Added a clarification that Appendix C is normative.

18) Added a normative requirement on [RFC7146] and made a few related
changes in Section 9.3 to align the text in this document with
that of [RFC7146].

19) Added a new Section 9.2.3 covering Kerberos authentication
considerations.

20) Added text in Section 9.3.3 noting that OCSP is now allowed for
checking certificates used with IPsec in addition to the use
of CRLs.

21) Added text in Section 9.3.1 specifying that extended sequence
numbers (ESNs) are now required for ESPv2 (part of IPsec v2).

2.4. Conventions

In examples, "I->" and "T->" show iSCSI PDUs sent by the initiator
and target, respectively.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

3. UML Conventions

3.1. UML Conventions Overview
The SCSI Architecture Model (SAM) uses class diagrams and object
diagrams with notation that is based on the Unified Modeling Language

[UML]. Therefore, this document also uses UML to model the
relationships for SCSI and iSCSI objects.

Chadalapaka, et al. Standards Track [Page 20]

RFC 7143 iISCSI (Consolidated) April 2014

A treatise on the graphical notation used in UML is beyond the scope

of this document. However, given the use of ASCII drawing for UML

static class diagrams, a description of the notational conventions

used in this document is included in the remainder of this section.
3.2. Multiplicity Notion

Not specified The number of instances of an attribute is not
specified.

1 One instance of the class or attribute exists.

0..* Zero or more instances of the class or attribute
exist.

1..* One or more instances of the class or attribute
exist.

0..1 Zero or one instance of the class or attribute
exists.

n..m nto m instances of the class or attribute exist
(e.g., 2..8).

X, n..m Multiple disjoint instances of the class or
attribute exist (e.g., 2, 8..15).

Chadalapaka, et al. Standards Track [Page 21]

RFC 7143 iISCSI (Consolidated) April 2014

3.3. Class Diagram Conventions

+ + + + e +

| Class Name | | Class Name | | Class Name |
+ + o+ + + +

| || |

+ + o+ +

I I

e +

The previous three diagrams are examples of a class with no
attributes and with no operations.

+ + o+ +
| ClassName | | Class Name |
+ + t

| attribute 01[1] | attribute 01[1] |
I

+

I

4

I
attribute 02[1] | | attribute 02[1] |
+ 4+ +

4
T

The preceding two diagrams are examples of a class with attributes
and with no operations.

Class Name |
+
attribute 01[1..] |
attribute 02[1] |
+
operation 01() |
operation 02() |
+

T T+ 4

The preceding diagram is an example of a class with attributes
that have a specified multiplicity and operations.

Chadalapaka, et al. Standards Track [Page 22]

RFC 7143 iISCSI (Consolidated) April 2014

3.4. Class Diagram Notation for Associations

S +
| ClassA |

e + association_name +----------------- +
| attribute 01[1] |<----------=------- > ClassB |

| attribute 02[1] | 1..* 0..1 +--—--m-mmmeee- +
Fommemmm e + | attribute 03[1] |

| operation 1() | Fommmmmee e +
S +

The preceding diagram is an example where Class A knows about
Class B (i.e., read as "Class A association_name Class B") and
Class B knows about Class A (i.e., read as "Class B
association_name Class A"). The use of association_name is
optional. The multiplicity notation (1..* and 0..1) indicates the
number of instances of the object.

S +
| Class A |

+ + B +

| attribute 01[1] |<------------- | ClassB |
| attribute 02[1] |1 0.1 +------m--mmemmmee- +
e + | attribute 03[1] |

| operation 1() | B +
R — +

The preceding diagram is an example where Class B knows about
Class A (i.e., read as "Class B knows about Class A") but Class A
does not know about Class B.

| Class A |

+ + S +

| attribute 01[1] |----------- > ClassB |
| attribute 02[1] | 0..* 1 +-----m--mmommmeee- +
+ + | attribute 03[1] |

| operation1() | + +

4
T

The preceding diagram is an example where Class A knows about
Class B (i.e., read as "Class A knows about Class B") but Class B
does not know about Class A.

Chadalapaka, et al. Standards Track [Page 23]

RFC 7143 iISCSI (Consolidated) April 2014

3.5. Class Diagram Notation for Aggregations

S — + S RE— +
| Class whole |0------------ | Class part |
T + F T — +

The preceding diagram is an example where Class whole is an
aggregate that contains Class part and where Class part may
continue to exist even if Class whole is removed (i.e., read as
"the whole contains the part").

S + F S —— +
| Class whole |@------------ | Class part |
S ——— + F I — +

The preceding diagram is an example where Class whole is an
aggregate that contains Class part where Class part only belongs
to one Class whole, and the Class part does not continue to exist
if the Class whole is removed (i.e., read as "the whole contains
the part").

The preceding diagram is an example where there is a constraint
between the associations, where the (a) footnote describes the
constraint.

Chadalapaka, et al. Standards Track [Page 24]

RFC 7143 iISCSI (Consolidated) April 2014

3.6. Class Diagram Notation for Generalizations

| Superclass |

The preceding diagram is an example where the subclass is a kind
of superclass. A subclass shares all the attributes and

operations of the superclass (i.e., the subclass inherits from the
superclass).

4. Overview
4.1. SCSI Concepts

The SCSI Architecture Model - 2 [SAMZ2] describes in detail the
architecture of the SCSI family of I/O protocols. This section
provides a brief background of the SCSI architecture and is intended
to familiarize readers with its terminology.

At the highest level, SCSI is a family of interfaces for requesting
services from I/O devices, including hard drives, tape drives, CD and
DVD drives, printers, and scanners. In SCSI terminology, an
individual 1/0 device is called a "logical unit" (LU).

SCSl is a client-server architecture. Clients of a SCSI interface

are called "initiators". Initiators issue SCSI "commands" to request
services from components -- LUs of a server known as a "target". The
"device server" on the LU accepts SCSI commands and processes them.

A "SCSI transport" maps the client-server SCSI protocol to a specific
interconnect. The initiator is one endpoint of a SCSI transport.

The "target” is the other endpoint. A target can contain multiple
LUs. Each LU has an address within a target called a Logical Unit
Number (LUN).

A SCSI task is a SCSI command or possibly a linked set of SCSI
commands. Some LUs support multiple pending (queued) tasks, but the
gueue of tasks is managed by the LU. The target uses an initiator-
provided "task tag" to distinguish between tasks. Only one command

in a task can be outstanding at any given time.

Chadalapaka, et al. Standards Track [Page 25]

RFC 7143 iISCSI (Consolidated) April 2014

Each SCSI command results in an optional data phase and a required
response phase. In the data phase, information can travel from the
initiator to the target (e.g., write), from the target to the

initiator (e.g., read), or in both directions. In the response

phase, the target returns the final status of the operation,

including any errors.

Command Descriptor Blocks (CDBs) are the data structures used to
contain the command parameters that an initiator sends to a target.
The CDB content and structure are defined by [SAMZ2] and device-type
specific SCSI standards.

4.2. iSCSI Concepts and Functional Overview

The iSCSI protocol is a mapping of the SCSI command, event, and task
management model (see [SAMZ2]) over the TCP protocol. SCSI commands
are carried by iSCSI requests, and SCSI responses and status are

carried by iISCSI responses. iSCSI also uses the request-response
mechanism for iISCSI protocol mechanisms.

For the remainder of this document, the terms "initiator" and
"target" refer to "iSCSI initiator node" and "iSCSI target node",
respectively (see iSCSI), unless otherwise qualified.

As its title suggests, Section 4 presents an overview of the iISCSI
concepts, and later sections in the rest of the specification contain
the normative requirements -- in many cases covering the same
concepts discussed in Section 4. Such normative requirements text
overrides the overview text in Section 4 if there is a disagreement
between the two.

In keeping with similar protocols, the initiator and target divide
their communications into messages. This document uses the term
"ISCSI Protocol Data Unit" (iSCSI PDU) for these messages.

For performance reasons, iSCSI allows a "phase-collapse”. A command
and its associated data may be shipped together from initiator to
target, and data and responses may be shipped together from targets.

The iSCSI transfer direction is defined with respect to the

initiator. Outbound or outgoing transfers are transfers from an
initiator to a target, while inbound or incoming transfers are from a
target to an initiator.

An iSCSI task is an iSCSI request for which a response is expected.

Chadalapaka, et al. Standards Track [Page 26]

RFC 7143 iISCSI (Consolidated) April 2014

In this document, "iISCSI request”, "iISCSI command", request, or
(unqualified) command have the same meaning. Also, unless otherwise
specified, status, response, or numbered response have the same
meaning.

4.2.1. Layers and Sessions

The following conceptual layering model is used to specify initiator
and target actions and the way in which they relate to transmitted
and received Protocol Data Units:

- The SCSI layer builds/receives SCSI CDBs (Command Descriptor
Blocks) and passes/receives them with the remaining Execute
Command [SAM2] parameters to/from

- the iISCSI layer that builds/receives iISCSI PDUs and
relays/receives them to/from one or more TCP connections; the
group of connections form an initiator-target "session".

Communication between the initiator and target occurs over one or

more TCP connections. The TCP connections carry control messages,
SCSI commands, parameters, and data within iISCSI Protocol Data Units
(iISCSI PDUSs). The group of TCP connections that link an initiator

with a target form a session (equivalent to a SCSI |_T nexus; see
Section 4.4.2). A session is defined by a session ID that is

composed of an initiator part and a target part. TCP connections can

be added and removed from a session. Each connection within a
session is identified by a connection ID (CID).

Across all connections within a session, an initiator sees one
"target image". All target-identifying elements, such as a LUN, are
the same. A target also sees one "initiator image" across all
connections within a session. Initiator-identifying elements, such
as the Initiator Task Tag, are global across the session, regardless
of the connection on which they are sent or received.

iISCSI targets and initiators MUST support at least one TCP connection
and MAY support several connections in a session. For error recovery
purposes, targets and initiators that support a single active

connection in a session SHOULD support two connections during
recovery.

Chadalapaka, et al. Standards Track [Page 27]

RFC 7143 iISCSI (Consolidated) April 2014

4.2.2. Ordering and iSCSI Numbering

iISCSI uses command and status numbering schemes and a data sequencing
scheme.

Command numbering is session-wide and is used for ordered command
delivery over multiple connections. It can also be used as a
mechanism for command flow control over a session.

Status numbering is per connection and is used to enable missing
status detection and recovery in the presence of transient or
permanent communication errors.

Data sequencing is per command or part of a command (R2T-triggered
sequence) and is used to detect missing data and/or R2T PDUs due to
header digest errors.

Typically, fields in the iISCSI PDUs communicate the sequence numbers
between the initiator and target. During periods when traffic on a
connection is unidirectional, iISCSI NOP-Out/NOP-In PDUs may be
utilized to synchronize the command and status ordering counters of
the target and initiator.

The iSCSI session abstraction is equivalent to the SCSI |_T nexus,

and the iSCSI session provides an ordered command delivery from the
SCSil initiator to the SCSI target. For detailed design

considerations that led to the iISCSI session model as it is defined

here and how it relates the SCSI command ordering features defined in
SCSI specifications to the iISCSI concepts, see [RFC3783].

4.2.2.1. Command Numbering and Acknowledging

iISCSI performs ordered command delivery within a session. All
commands (initiator-to-target PDUS) in transit from the initiator to
the target are numbered.

iISCSI considers a task to be instantiated on the target in response
to every request issued by the initiator. A set of task management
operations, including abort and reassign (see Section 11.5), may be
performed on an iSCSI task; however, an abort operation cannot be
performed on a task management operation, and usage of reassign
operations has certain constraints. See Section 11.5.1 for details.

Some iSCSI tasks are SCSI tasks, and many SCSI activities are related

to a SCSI task ([SAM2]). In all cases, the task is identified by the
Initiator Task Tag for the life of the task.

Chadalapaka, et al. Standards Track [Page 28]

RFC 7143 iISCSI (Consolidated) April 2014

The command number is carried by the iISCSI PDU as the CmdSN (command
sequence number). The numbering is session-wide. Outgoing iSCSI

PDUs carry this number. The iSCSI initiator allocates CmdSNs with a

32-bit unsigned counter (modulo 2**32). Comparisons and arithmetic

on CmdSNs use Serial Number Arithmetic as defined in [RFC1982] where
SERIAL_BITS = 32.

Commands meant for immediate delivery are marked with an immediate
delivery flag; they MUST also carry the current CmdSN. The CmdSN
MUST NOT advance after a command marked for immediate delivery is
sent.

Command numbering starts with the first Login Request on the first
connection of a session (the leading login on the leading
connection), and the CmdSN MUST be incremented by 1 in a Serial
Number Arithmetic sense, as defined in [RFC1982], for every
non-immediate command issued afterwards.

If immediate delivery is used with task management commands, these
commands may reach the target before the tasks on which they are
supposed to act. However, their CmdSN serves as a marker of their
position in the stream of commands. The initiator and target MUST
ensure that the SCSI task management functions specified in [SAM2]

act in accordance with the [SAM2] specification. For example, both
commands and responses appear as if delivered in order. Whenever the
CmdSN for an outgoing PDU is not specified by an explicit rule, the
CmdSN will carry the current value of the local CmdSN variable (see
later in this section).

The means by which an implementation decides to mark a PDU for
immediate delivery or by which iSCSI decides by itself to mark a PDU
for immediate delivery are beyond the scope of this document.

The number of commands used for immediate delivery is not limited,

and their delivery to execution is not acknowledged through the
numbering scheme. An iSCSI target MAY reject immediate commands,
e.g., due to lack of resources to accommodate additional commands.

An iSCSI target MUST be able to handle at least one immediate task
management command and one immediate non-task-management iSCSI
command per connection at any time.

In this document, delivery for execution means delivery to the SCSI
execution engine or an iSCSI protocol-specific execution engine

(e.g., for Text Requests with public or private extension keys

involving an execution component). With the exception of the
commands marked for immediate delivery, the iISCSI target layer MUST
deliver the commands for execution in the order specified by the
CmdSN. Commands marked for immediate delivery may be delivered by

Chadalapaka, et al. Standards Track [Page 29]

RFC 7143 iISCSI (Consolidated) April 2014

the iISCSI target layer for execution as soon as detected. iISCSI may
avoid delivering some commands to the SCSI target layer if required

by a prior SCSI or iSCSI action (e.g., a CLEAR TASK SET task
management request received before all the commands on which it was
supposed to act).

On any connection, the iISCSI initiator MUST send the commands in
increasing order of CmdSN, except for commands that are retransmitted
due to digest error recovery and connection recovery.

For the numbering mechanism, the initiator and target maintain the
following three variables for each session:

- CmdSN: the current command sequence number, advanced by 1 on
each command shipped except for commands marked for immediate
delivery as discussed above. The CmdSN always contains the
number to be assigned to the next command PDU.

- ExpCmdSN: the next expected command by the target. The target
acknowledges all commands up to, but not including, this number.
The initiator treats all commands with a CmdSN less than the
ExpCmdSN as acknowledged. The target iSCSI layer sets the
ExpCmdSN to the largest non-immediate CmdSN that it can deliver
for execution "plus 1" per [RFC1982]. There MUST NOT be any
holes in the acknowledged CmdSN sequence.

- MaxCmdSN: the maximum number to be shipped. The queuing
capacity of the receiving iSCSI layer is
MaxCmdSN - ExpCmdSN + 1.

The initiator's ExpCmdSN and MaxCmdSN are derived from target-to-
initiator PDU fields. Comparisons and arithmetic on the ExpCmdSN and
MaxCmdSN MUST use Serial Number Arithmetic as defined in [RFC1982]
where SERIAL_BITS = 32.

The target MUST NOT transmit a MaxCmdSN that is less than

ExpCmdSN - 1. For non-immediate commands, the CmdSN field can take
any value from the ExpCmdSN to the MaxCmdSN inclusive. The target
MUST silently ignore any non-immediate command outside of this range

or non-immediate duplicates within the range. The CmdSN carried by
immediate commands may lie outside the ExpCmdSN-to-MaxCmdSN range.
For example, if the initiator has previously sent a non-immediate

command carrying the CmdSN equal to the MaxCmdSN, the target window
is closed. For group task management commands issued as immediate
commands, the CmdSN indicates the scope of the group action (e.g., an
ABORT TASK SET indicates which commands are to be aborted).

Chadalapaka, et al. Standards Track [Page 30]

RFC 7143 iISCSI (Consolidated) April 2014

MaxCmdSN and ExpCmdSN fields are processed by the initiator as
follows:

- If the PDU MaxCmdSN is less than the PDU ExpCmdSN - 1 (in a
Serial Number Arithmetic sense), they are both ignored.

- If the PDU MaxCmdSN is greater than the local MaxCmdSN (in a
Serial Number Arithmetic sense), it updates the local MaxCmdSN;
otherwise, it is ignored.

- If the PDU ExpCmdSN is greater than the local ExpCmdSN (in a
Serial Number Arithmetic sense), it updates the local ExpCmdSN;
otherwise, it is ignored.

This sequence is required because updates may arrive out of order
(e.g., the updates are sent on different TCP connections).

iISCSI initiators and targets MUST support the command numbering
scheme.

A numbered iSCSI request will not change its allocated CmdSN,
regardless of the number of times and circumstances in which it is
reissued (see Section 7.2.1). At the target, the CmdSN is only
relevant while the command has not created any state related to its
execution (execution state); afterwards, the CmdSN becomes
irrelevant. Testing for the execution state (represented by
identifying the Initiator Task Tag) MUST precede any other action at
the target. If no execution state is found, it is followed by

ordering and delivery. If an execution state is found, it is

followed by delivery if it has not already been delivered.

If an initiator issues a command retry for a command with CmdSN R on
a connection when the session CmdSN value is Q, it MUST NOT advance
the CmdSN past R + 2**31 - 1 unless

- the connection is no longer operational (i.e., it has returned
to the FREE state; see Section 8.1.3),

- the connection has been reinstated (see Section 6.3.4), or

- a non-immediate command with a CmdSN equal to or greater than Q
was issued subsequent to the command retry on the same
connection and the reception of that command is acknowledged by
the target (see Section 10.4).

A target command response or Data-In PDU with status MUST NOT precede

the command acknowledgment. However, the acknowledgment MAY be
included in the response or the Data-In PDU.

Chadalapaka, et al. Standards Track [Page 31]

RFC 7143 iISCSI (Consolidated) April 2014

4.2.2.2. Response/Status Numbering and Acknowledging

Responses in transit from the target to the initiator are numbered.

The StatSN (status sequence number) is used for this purpose. The
StatSN is a counter maintained per connection. The ExpStatSN is used
by the initiator to acknowledge status. The status sequence number
space is 32-bit unsigned integers, and the arithmetic operations are

the regular mod(2**32) arithmetic.

Status numbering starts with the Login Response to the first Login
Request of the connection. The Login Response includes an initial
value for status numbering (any initial value is valid).

To enable command recovery, the target MAY maintain enough state
information for data and status recovery after a connection failure.

A target doing so can safely discard all of the state information
maintained for recovery of a command after the delivery of the status
for the command (numbered StatSN) is acknowledged through the
ExpStatSN.

A large absolute difference between the StatSN and the ExpStatSN may
indicate a failed connection. Initiators MUST undertake recovery
actions if the difference is greater than an implementation-defined
constant that MUST NOT exceed 2**31 - 1.

Initiators and targets MUST support the response-numbering scheme.
4.2.2.3. Response Ordering
4.2.2.3.1. Need for Response Ordering

Whenever an iSCSI session is composed of multiple connections, the
Response PDUs (task responses or TMF Responses) originating in the
target SCSI layer are distributed onto the multiple connections by

the target iISCSI layer according to iISCSI connection allegiance

rules. This process generally may not preserve the ordering of the
responses by the time they are delivered to the initiator SCSI layer.

Since ordering is not expected across SCSI Response PDUs anyway, this
approach works fine in the general case. However, to address the
special cases where some ordering is desired by the SCSI layer, we
introduce the notion of a "Response Fence": a Response Fence is
logically the attribute/property of a SCSI response message handed

off to a target iISCSI layer that indicates that there are special

SCSil-level ordering considerations associated with this particular
response message. Whenever a Response Fence is set or required on a

Chadalapaka, et al. Standards Track [Page 32]

RFC 7143 iISCSI (Consolidated) April 2014

SCSI response message, we define the semantics in Section 4.2.2.3.2
with respect to the target iSCSI layer’s handling of such SCSI
response messages.

4.2.2.3.2. Response Ordering Model Description

The target SCSI protocol layer hands off the SCSI response messages
to the target iSCSI layer by invoking the "Send Command Complete"
protocol data service ([SAM2], Clause 5.4.2) and "Task Management
Function Executed" ([SAMZ2], Clause 6.9) service. On receiving the
SCSI response message, the iISCSI layer exhibits the Response Fence
behavior for certain SCSI response messages (Section 4.2.2.3.4
describes the specific instances where the semantics must be
realized).

Whenever the Response Fence behavior is required for a SCSI response
message, the target iSCSI layer MUST ensure that the following
conditions are met in delivering the response message to the

initiator iISCSI layer:

- A response with a Response Fence MUST be delivered
chronologically after all the "preceding” responses onthe |_T L
nexus, if the preceding responses are delivered at all, to the
initiator iISCSI layer.

- A response with a Response Fence MUST be delivered
chronologically prior to all the "following" responses on the
|_T_L nexus.

The notions of "preceding" and "following" refer to the order of
handoff of a response message from the target SCSI protocol layer to
the target iSCSI layer.

4.2.2.3.3. iISCSI| Semantics with the Interface Model

Whenever the TaskReporting key (Section 13.23) is negotiated to
ResponseFence or FastAbort for an iSCSI session and the Response
Fence behavior is required for a SCSI response message, the target
iISCSI layer MUST perform the actions described in this section for
that session.

a) If it is a single-connection session, no special processing is
required. The standard SCSI Response PDU build and dispatch
process happens.

b) If it is a multi-connection session, the target iISCSI layer

takes note of the last-sent and unacknowledged StatSN on each
of the connections in the iISCSI session, and waits for an

Chadalapaka, et al. Standards Track [Page 33]

RFC 7143 iISCSI (Consolidated) April 2014

acknowledgment (NOP-In PDUs MAY be used to solicit
acknowledgments as needed in order to accelerate this process)
of each such StatSN to clear the fence. The SCSI Response PDU
requiring the Response Fence behavior MUST NOT be sent to the
initiator before acknowledgments are received for each of the
unacknowledged StatSNs.

c) The target iISCSI layer must wait for an acknowledgment of the
SCSI Response PDU that carried the SCSI response requiring the
Response Fence behavior. The fence MUST be considered cleared
only after receiving the acknowledgment.

d) All further status processing for the LU is resumed only after
clearing the fence. If any new responses for the |_T L nexus
are received from the SCSI layer before the fence is cleared,
those Response PDUs MUST be held and queued at the iSCSI layer
until the fence is cleared.

4.2.2.3.4. Current List of Fenced Response Use Cases

This section lists the situations in which fenced response behavior

is REQUIRED in iSCSI target implementations. Note that the following
list is an exhaustive enumeration as currently identified -- it is
expected that as SCSI protocol specifications evolve, the
specifications will enumerate when response fencing is required on a
case-by-case basis.

Whenever the TaskReporting key (Section 13.23) is negotiated to
ResponseFence or FastAbort for an iSCSI session, the target iSCSI
layer MUST assume that the Response Fence is required for the
following SCSI completion messages:

a) The first completion message carrying the UA after the multi-
task abort on issuing and third-party sessions. See
Section 4.2.3.2 for related TMF discussion.

b) The TMF Response carrying the multi-task TMF Response on the
issuing session.

c) The completion message indicating ACA establishment on the
issuing session.

d) The first completion message carrying the ACA ACTIVE status
after ACA establishment on issuing and third-party sessions.

Chadalapaka, et al. Standards Track [Page 34]

RFC 7143 iISCSI (Consolidated) April 2014

e) The TMF Response carrying the CLEAR ACA response on the issuing
session.

f) The response to a PERSISTENT RESERVE OUT/PREEMPT AND ABORT
command.

Notes:

- Due to the absence of ACA-related fencing requirements in
[RFC3720], initiator implementations SHOULD NOT use ACA on
multi-connection iISCSI sessions with targets complying only with
[RFC3720]. This can be determined via TaskReporting key
(Section 13.23) negotiation -- when the negotiation results in
either "RFC3720" or "NotUnderstood".

- Initiators that want to employ ACA on multi-connection iSCSI
sessions SHOULD first assess response-fencing behavior via
negotiating for the "ResponseFence" or "FastAbort" value for the
TaskReporting (Section 13.23) key.

4.2.2.4. Data Sequencing

Data and R2T PDUs transferred as part of some command execution MUST
be sequenced. The DataSN field is used for data sequencing. For

input (read) data PDUs, the DataSN starts with O for the first data

PDU of an input command and advances by 1 for each subsequent data
PDU. For output data PDUs, the DataSN starts with O for the first

data PDU of a sequence (the initial unsolicited sequence or any data
PDU sequence issued to satisfy an R2T) and advances by 1 for each
subsequent data PDU. R2Ts are also sequenced per command. For
example, the first R2T has an R2TSN of 0 and advances by 1 for each
subsequent R2T. For bidirectional commands, the target uses the
DataSN/R2TSN to sequence Data-In and R2T PDUs in one continuous
sequence (undifferentiated). Unlike command and status, data PDUs
and R2Ts are not acknowledged by a field in regular outgoing PDUs.
Data-In PDUs can be acknowledged on demand by a special form of the
SNACK PDU. Data and R2T PDUs are implicitly acknowledged by status
for the command. The DataSN/R2TSN field enables the initiator to
detect missing data or R2T PDUs.

For any read or bidirectional command, a target MUST issue less than

2**32 combined R2T and Data-In PDUs. Any output data sequence MUST
contain less than 2**32 Data-Out PDUs.

Chadalapaka, et al. Standards Track [Page 35]

RFC 7143 iISCSI (Consolidated) April 2014

4.2.3. iSCSI Task Management
4.2.3.1. Task Management Overview

iISCSI task management features allow an initiator to control the

active iISCSI tasks on an operational iISCSI session that it has with

an iSCSI target. Section 11.5 defines the task management function

types that this specification defines -- ABORT TASK, ABORT TASK SET,

CLEAR ACA, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET,
TARGET COLD RESET, and TASK REASSIGN.

Out of these function types, ABORT TASK and TASK REASSIGN functions
manage a single active task, whereas ABORT TASK SET, CLEAR TASK SET,
LOGICAL UNIT RESET, TARGET WARM RESET, and TARGET COLD RESET
functions can each potentially affect multiple active tasks.

4.2.3.2. Notion of Affected Tasks

This section defines the notion of "affected tasks" in multi-task
abort scenarios. Scope definitions in this section apply to both the
standard multi-task abort semantics (Section 4.2.3.3) and the
FastAbort multi-task abort semantics behavior (Section 4.2.3.4).

ABORT TASK SET: All outstanding tasks for the |_T_L nexus identified
by the LUN field in the ABORT TASK SET TMF Request PDU.

CLEAR TASK SET: All outstanding tasks in the task set for the LU
identified by the LUN field in the CLEAR TASK SET TMF Request PDU.
See [SPC3] for the definition of a "task set".

LOGICAL UNIT RESET: All outstanding tasks from all initiators for the
LU identified by the LUN field in the LOGICAL UNIT RESET
Request PDU.

TARGET WARM RESET/TARGET COLD RESET: All outstanding tasks from all
initiators across all LUs to which the TMF-issuing session has
access on the SCSI target device hosting the iISCSI session.

Usage: An "ABORT TASK SET TMF Request PDU" in the preceding text is
an iSCSI TMF Request PDU with the "Function" field set to "ABORT
TASK SET" as defined in Section 11.5. Similar usage is employed
for other scope descriptions.

Chadalapaka, et al. Standards Track [Page 36]

RFC 7143 iISCSI (Consolidated) April 2014

4.2.3.3. Standard Multi-Task Abort Semantics

All iISCSI implementations MUST support the protocol behavior defined

in this section as the default behavior. The execution of ABORT TASK

SET, CLEAR TASK SET, LOGICAL UNIT RESET, TARGET WARM RESET, and
TARGET COLD RESET TMF Requests consists of the following sequence of
actions in the specified order on the specified party.

The initiator iISCSI layer:

a) MUST continue to respond to each TTT received for the affected
tasks.

b) SHOULD process any responses received for affected tasks in the
normal fashion. This is acceptable because the responses are
guaranteed to have been sent prior to the TMF Response.

¢) SHOULD receive the TMF Response concluding all the tasks in the
set of affected tasks, unless the initiator has done something
(e.g., LU reset, connection drop) that may prevent the TMF
Response from being sent or received. The initiator MUST thus
conclude all affected tasks as part of this step in either case
and MUST discard any TMF Response received after the affected
tasks are concluded.

The target iISCSI layer:

a) MUST wait for responses on currently valid Target Transfer Tags
of the affected tasks from the issuing initiator. MAY wait for
responses on currently valid Target Transfer Tags of the
affected tasks from third-party initiators.

b) MUST wait (concurrent with the wait in Step a) for all commands
of the affected tasks to be received based on the CmdSN
ordering. SHOULD NOT wait for new commands on third-party
affected sessions -- only the instantiated tasks have to be
considered for the purpose of determining the affected tasks.
However, in the case of target-scoped requests (i.e., TARGET
WARM RESET and TARGET COLD RESET), all of the commands that are
not yet received on the issuing session in the command stream
can be considered to have been received with no command waiting
period -- i.e., the entire CmdSN space up to the CmdSN of the
task management function can be "plugged".

¢) MUST propagate the TMF Request to, and receive the response
from, the target SCSI layer.

Chadalapaka, et al. Standards Track [Page 37]

RFC 7143 iISCSI (Consolidated) April 2014

d) MUST provide the Response Fence behavior for the TMF Response
on the issuing session as specified in Section 4.2.2.3.2.

e) MUST provide the Response Fence behavior on the first post-TMF
Response on third-party sessions as specified in
Section 4.2.2.3.3. If some tasks originate from non-iSCSI
|_T_L nexuses, then the means by which the target ensures that
all affected tasks have returned their status to the initiator
are defined by the specific non-iSCSI transport protocol(s).

Technically, the TMF servicing is complete in Step d). Data

transfers corresponding to terminated tasks may, however, still be in
progress on third-party iSCSI sessions even at the end of Step e).

The TMF Response MUST NOT be sent by the target iSCSI layer before
the end of Step d) and MAY be sent at the end of Step d) despite

these outstanding data transfers until after Step e).

4.2.3.4. FastAbort Multi-Task Abort Semantics

Protocol behavior defined in this section SHOULD be implemented by

all iISCSI implementations complying with this document, noting that

some steps below may not be compatible with [RFC3720] semantics.

However, protocol behavior defined in this section MUST be exhibited

by iSCSI implementations on an iSCSI session when they negotiate the
TaskReporting (Section 13.23) key to "FastAbort" on that session.

The execution of ABORT TASK SET, CLEAR TASK SET, LOGICAL UNIT RESET,
TARGET WARM RESET, and TARGET COLD RESET TMF Requests consists of the
following sequence of actions in the specified order on the specified

party.
The initiator iISCSI layer:

a) MUST NOT send any more Data-Out PDUs for affected tasks on the
issuing connection of the issuing iISCSI session once the TMF is
sent to the target.

b) SHOULD process any responses received for affected tasks in the
normal fashion. This is acceptable because the responses are
guaranteed to have been sent prior to the TMF Response.

c) MUST respond to each Async Message PDU with a Task Termination
AsyncEvent (5) as defined in Section 11.9.

Chadalapaka, et al. Standards Track [Page 38]

RFC 7143 iISCSI (Consolidated) April 2014

d) MUST treat the TMF Response as terminating all affected tasks
for which responses have not been received and MUST discard any
responses for affected tasks received after the TMF Response is
passed to the SCSI layer (although the semantics defined in
this section ensure that such an out-of-order scenario will
never happen with a compliant target implementation).

The target iISCSI layer:

a) MUST wait for all commands of the affected tasks to be received
based on the CmdSN ordering on the issuing session. SHOULD NOT
wait for new commands on third-party affected sessions -- only
the instantiated tasks have to be considered for the purpose of
determining the affected tasks. In the case of target-scoped
requests (i.e., TARGET WARM RESET and TARGET COLD RESET), all
the commands that are not yet received on the issuing session
in the command stream can be considered to have been received
with no command waiting period -- i.e., the entire CmdSN space
up to the CmdSN of the task management function can be
"plugged".

b) MUST propagate the TMF Request to, and receive the response
from, the target SCSI layer.

c) MUST leave all active "affected TTTs" (i.e., active TTTs
associated with affected tasks) valid.

d) MUST send an Asynchronous Message PDU with AsyncEvent=5
(Section 11.9) on:

1) each connection of each third-party session to which at
least one affected task is allegiant if
TaskReporting=FastAbort is operational on that third-party
session, and

2) each connection except the issuing connection of the issuing
session that has at least one allegiant affected task.

If there are multiple affected LUs (say, due to a target

reset), then one Async Message PDU MUST be sent for each
such LU on each connection that has at least one allegiant
affected task. The LUN field in the Asynchronous Message
PDU MUST be set to match the LUN for each such LU.

e) MUST address the Response Fence flag on the TMF Response on the
issuing session as defined in Section 4.2.2.3.3.

Chadalapaka, et al. Standards Track [Page 39]

RFC 7143 iISCSI (Consolidated) April 2014

f) MUST address the Response Fence flag on the first post-TMF
Response on third-party sessions as defined in
Section 4.2.2.3.3. If some tasks originate from non-iSCSI
I_T_L nexuses, then the means by which the target ensures that
all affected tasks have returned their status to the initiator
are defined by the specific non-iSCSI transport protocol(s).

g) MUST free up the affected TTTs (and STags for ISER, if
applicable) and the corresponding buffers, if any, once it
receives each associated NOP-Out acknowledgment that the
initiator generated in response to each Async Message.

Technically, the TMF servicing is complete in Step e). Data

transfers corresponding to terminated tasks may, however, still be in
progress even at the end of Step f). A TMF Response MUST NOT be sent
by the target iSCSI layer before the end of Step e) and MAY be sent

at the end of Step e) despite these outstanding Data transfers until

Step g). Step g) specifies an event to free up any such resources

that may have been reserved to support outstanding data transfers.

4.2.3.5. Affected Tasks Shared across Standard and FastAbort Sessions

If an iISCSI target implementation is capable of supporting
TaskReporting=FastAbort functionality (Section 13.23), it may end up
in a situation where some sessions have TaskReporting=RFC3720
operational (RFC 3720 sessions) while some other sessions have
TaskReporting=FastAbort operational (FastAbort sessions) even while
accessing a shared set of affected tasks (Section 4.2.3.2). If the
issuing session is an RFC 3720 session, the iISCSI target
implementation is FastAbort-capable, and the third-party affected
session is a FastAbort session, the following behavior SHOULD be
exhibited by the iSCSI target layer:

a) Between Steps c) and d) of the target behavior in
Section 4.2.3.3, send an Asynchronous Message PDU with
AsyncEvent=5 (Section 11.9) on each connection of each third-
party session to which at least one affected task is allegiant.
If there are multiple affected LUs, then send one Async Message
PDU for each such LU on each connection that has at least one
allegiant affected task. When sent, the LUN field in the
Asynchronous Message PDU MUST be set to match the LUN for each
such LU.

b) After Step e) of the target behavior in Section 4.2.3.3, free
up the affected TTTs (and STags for iSER, if applicable) and
the corresponding buffers, if any, once each associated NOP-Out
acknowledgment is received that the third-party initiator
generated in response to each Async Message sent in Step a).

Chadalapaka, et al. Standards Track [Page 40]

RFC 7143 iISCSI (Consolidated) April 2014

If the issuing session is a FastAbort session, the iISCSI target
implementation is FastAbort-capable, and the third-party affected
session is an RFC 3720 session, the iSCSI target layer MUST NOT send
Asynchronous Message PDUs on the third-party session to prompt the
FastAbort behavior.

If the third-party affected session is a FastAbort session and the

issuing session is a FastAbort session, the initiator in the third-

party role MUST respond to each Async Message PDU with AsyncEvent=5
as defined in Section 11.9. Note that an initiator MAY thus receive

these Async Messages on a third-party affected session even if the
session is a single-connection session.

4.2.3.6. Rationale behind the FastAbort Semantics

There are fundamentally three basic objectives behind the semantics
specified in Sections 4.2.3.3 and 4.2.3.4.

a) Maintaining an ordered command flow |_T nexus abstraction to
the target SCSI layer even with multi-connection sessions.

- Target iISCSI processing of a TMF Request must maintain the
single flow illusion. The target behavior in Step b) of
Section 4.2.3.3 and the target behavior in Step a) of
Section 4.2.3.4 correspond to this objective.

b) Maintaining a single ordered response flow |_T nexus
abstraction to the initiator SCSI layer even with multi-
connection sessions when one response (i.e., TMF Response)
could imply the status of other unfinished tasks from the
initiator’s perspective.

- The target must ensure that the initiator does not see "old"
task responses (that were placed on the wire chronologically
earlier than the TMF Response) after seeing the TMF Response.
The target behavior in Step d) of Section 4.2.3.3 and the
target behavior in Step e) of Section 4.2.3.4 correspond to
this objective.

- Whenever the result of a TMF action is visible across
multiple I_T_L nexuses, [SAMZ2] requires the SCSI device
server to trigger a UA on each of the other |_T_L nexuses.
Once an initiator is notified of such a UA, the application
client on the receiving initiator is required to clear its
task state (Clause 5.5 of [SAM2]) for the affected tasks. It
would thus be inappropriate to deliver a SCSI Response for a
task after the task state is cleared on the initiator, i.e.,
after the UA is notified. The UA natification contained in

Chadalapaka, et al. Standards Track [Page 41]

RFC 7143 iISCSI (Consolidated) April 2014

the first SCSI Response PDU on each affected third-party
I_T_L nexus after the TMF action thus MUST NOT pass the
affected task responses on any of the iSCSI sessions
accessing the LU. The target behavior in Step e) of
Section 4.2.3.3 and the target behavior in Step f) of

Section 4.2.3.4 correspond to this objective.

c¢) Draining all active TTTs corresponding to affected tasks in a
deterministic fashion.

- Data-Out PDUs with stale TTTs arriving after the tasks are
terminated can create a buffer management problem even for
traditional iISCSI implementations and is fatal for the
connection for iISCSI/ISER implementations. Either the
termination of affected tasks should be postponed until the
TTTs are retired (as in Step a) of Section 4.2.3.3), or the
TTTs and the buffers should stay allocated beyond task
termination to be deterministically freed up later (as in
Steps ¢) and g) of Section 4.2.3.4).

The only other notable optimization is the plugging. If all tasks on

an |_T nexus will be aborted anyway (as with a target reset), there

is no need to wait to receive all commands to plug the CmdSN holes.
The target iISCSI layer can simply plug all missing CmdSN slots and
move on with TMF processing. The first objective (maintaining a
single ordered command flow) is still met with this optimization
because the target SCSI layer only sees ordered commands.

4.2.4. iSCSI Login

The purpose of the iISCSI login is to enable a TCP connection for
iISCSI use, authentication of the parties, negotiation of the

session’s parameters, and marking of the connection as belonging to
an iSCSI session.

A session is used to identify to a target all the connections with a
given initiator that belong to the same |_T nexus. (For more details
on how a session relates to an I_T nexus, see Section 4.4.2.)

The targets listen on a well-known TCP port or other TCP port for
incoming connections. The initiator begins the login process by
connecting to one of these TCP ports.

As part of the login process, the initiator and target SHOULD
authenticate each other and MAY set a security association protocol
for the session. This can occur in many different ways and is
subject to negotiation; see Section 12.

Chadalapaka, et al. Standards Track [Page 42]

RFC 7143 iISCSI (Consolidated) April 2014

To protect the TCP connection, an IPsec security association MAY be
established before the Login Request. For information on using IPsec
security for iISCSI, see Section 9, [RFC3723], and [RFC7146].

The iSCSI Login Phase is carried through Login Requests and
Responses. Once suitable authentication has occurred and operational
parameters have been set, the session transitions to the Full Feature
Phase and the initiator may start to send SCSI commands. The
security policy for whether and by what means a target chooses to
authorize an initiator is beyond the scope of this document. For a

more detailed description of the Login Phase, see Section 6.

The login PDU includes the ISID part of the session ID (SSID). The
target portal group that services the login is implied by the

selection of the connection endpoint. For a new session, the TSIH is
zero. As part of the response, the target generates a TSIH.

During session establishment, the target identifies the SCSI

initiator port (the "I" in the "I_T nexus") through the value pair
(InitiatorName, 1SID). We describe InitiatorName later in this

section. Any persistent state (e.g., persistent reservations) on the

target that is associated with a SCSI initiator port is identified

based on this value pair. Any state associated with the SCSI target

port (the "T" in the "_T nexus") is identified externally by the
TargetName and Target Portal Group Tag (see Section 4.4.1). The ISID
is subject to reuse restrictions because it is used to identify a

persistent state (see Section 4.4.3).

Before the Full Feature Phase is established, only Login Request and

Login Response PDUs are allowed. Login Requests and Responses MUST
be used exclusively during login. On any connection, the Login Phase
MUST immediately follow TCP connection establishment, and a
subsequent Login Phase MUST NOT occur before tearing down the
connection.

A target receiving any PDU except a Login Request before the Login
Phase is started MUST immediately terminate the connection on which
the PDU was received. Once the Login Phase has started, if the

target receives any PDU except a Login Request, it MUST send a Login
reject (with Status "invalid during login") and then disconnect. If

the initiator receives any PDU except a Login Response, it MUST
immediately terminate the connection.

Chadalapaka, et al. Standards Track [Page 43]

RFC 7143 iISCSI (Consolidated) April 2014

4.2.5. iSCSI Full Feature Phase

Once the two sides successfully conclude the login on the first --

also called the leading -- connection in the session, the iISCSI

session is in the iISCSI Full Feature Phase. A connection is in the

Full Feature Phase if the session is in the Full Feature Phase and

the connection login has completed successfully. An iSCSI connection
is not in the Full Feature Phase when

a) it does not have an established transport connection, or

b) when it has a valid transport connection, but a successful
login was not performed or the connection is currently
logged out.

In a normal Full Feature Phase, the initiator may send SCSI commands
and data to the various LUs on the target by encapsulating them in
iISCSI PDUs that go over the established iSCSI session.

4.2.5.1. Command Connection Allegiance

For any iSCSI request issued over a TCP connection, the corresponding
response and/or other related PDU(s) MUST be sent over the same
connection. We call this "connection allegiance”. If the original
connection fails before the command is completed, the connection
allegiance of the command may be explicitly reassigned to a different
transport connection as described in detail in Section 7.2.

Thus, if an initiator issues a read command, the target MUST send the
requested data, if any, followed by the status, to the initiator over

the same TCP connection that was used to deliver the SCSI command.
If an initiator issues a write command, the initiator MUST send the

data, if any, for that command over the same TCP connection that was
used to deliver the SCSI command. The target MUST return Ready To
Transfer (R2T), if any, and the status over the same TCP connection
that was used to deliver the SCSI command. Retransmission requests
(SNACK PDUs), and the data and status that they generate, MUST also
use the same connection.

However, consecutive commands that are part of a SCSI linked command-
chain task (see [SAM2]) MAY use different connections. Connection
allegiance is strictly per command and not per task. During the

iISCSI Full Feature Phase, the initiator and target MAY interleave

unrelated SCSI commands, their SCSI data, and responses over the
session.

Chadalapaka, et al. Standards Track [Page 44]

RFC 7143 iISCSI (Consolidated) April 2014

4.2.5.2. Data Transfer Overview

Outgoing SCSI data (initiator-to-target user data or command
parameters) is sent as either solicited data or unsolicited data.

Solicited data are sent in response to R2T PDUs. Unsolicited data

can be sent as part of an iISCSI Command PDU ("immediate data") or in
separate iISCSI data PDUs.

Immediate data are assumed to originate at offset O in the initiator
SCSI write-buffer (outgoing data buffer). All other data PDUs have
the buffer offset set explicitly in the PDU header.

An initiator may send unsolicited data up to FirstBurstLength (see
Section 13.14) as immediate (up to the negotiated maximum PDU
length), in a separate PDU sequence, or both. All subsequent data
MUST be solicited. The maximum length of an individual data PDU or
the immediate-part of the first unsolicited burst MAY be negotiated

at login.

The maximum amount of unsolicited data that can be sent with a
command is negotiated at login through the FirstBurstLength (see
Section 13.14) key. A target MAY separately enable immediate data
(through the ImmediateData key) without enabling the more general
(separate data PDUs) form of unsolicited data (through the
InitialR2T key).

Unsolicited data for a write are meant to reduce the effect of
latency on throughput (no R2T is needed to start sending data). In
addition, immediate data is meant to reduce the protocol overhead
(both bandwidth and execution time).

An iSCSI initiator MAY choose not to send unsolicited data, only
immediate data or FirstBurstLength bytes of unsolicited data with a
command. If any non-immediate unsolicited data is sent, the total
unsolicited data MUST be either FirstBurstLength or all of the data,
if the total amount is less than the FirstBurstLength.

It is considered an error for an initiator to send unsolicited data
PDUs to a target that operates in R2T mode (only solicited data are
allowed). Itis also an error for an initiator to send more

unsolicited data, whether immediate or as separate PDUs, than
FirstBurstLength.

An initiator MUST honor an R2T data request for a valid outstanding

command (i.e., carrying a valid Initiator Task Tag) and deliver all
the requested data, provided the command is supposed to deliver

Chadalapaka, et al. Standards Track [Page 45]

RFC 7143 iISCSI (Consolidated) April 2014

outgoing data and the R2T specifies data within the command bounds.
The initiator action is unspecified for receiving an R2T request that
specifies data, all or in part, outside of the bounds of the command.

A target SHOULD NOT silently discard data and then request
retransmission through R2T. Initiators SHOULD NOT keep track of the
data transferred to or from the target (scoreboarding). SCSI targets
perform residual count calculation to check how much data was
actually transferred to or from the device by a command. This may
differ from the amount the initiator sent and/or received for reasons
such as retransmissions and errors. Read or bidirectional commands
implicitly solicit the transmission of the entire amount of data

covered by the command. SCSI data packets are matched to their
corresponding SCSI commands by using tags specified in the protocol.

In addition, iISCSI initiators and targets MUST enforce some ordering

rules. When unsolicited data is used, the order of the unsolicited

data on each connection MUST match the order in which the commands on
that connection are sent. Command and unsolicited data PDUs may be
interleaved on a single connection as long as the ordering

requirements of each are maintained (e.g., command N + 1 MAY be sent
before the unsolicited Data-Out PDUs for command N, but the

unsolicited Data-Out PDUs for command N MUST precede the unsolicited
Data-Out PDUs of command N + 1). A target that receives data out of
order MAY terminate the session.

4.2.5.3. Tags and Integrity Checks

Initiator tags for pending commands are unique initiator-wide for a
session. Target tags are not strictly specified by the protocol. It
is assumed that target tags are used by the target to tag (alone or
in combination with the LUN) the solicited data. Target tags are
generated by the target and "echoed" by the initiator.

These mechanisms are designed to accomplish efficient data delivery
along with a large degree of control over the data flow.

As the Initiator Task Tag is used to identify a task during its

execution, the iSCSI initiator and target MUST verify that all other

fields used in task-related PDUs have values that are consistent with
the values used at the task instantiation, based on the Initiator

Task Tag (e.g., the LUN used in an R2T PDU MUST be the same as the
one used in the SCSI Command PDU used to instantiate the task).
Using inconsistent field values is considered a protocol error.

Chadalapaka, et al. Standards Track [Page 46]

RFC 7143 iISCSI (Consolidated) April 2014

4.2.5.4. SCSI Task Management during iISCSI Full Feature Phase

SCSI task management assumes that individual tasks and task groups
can be aborted based solely on the task tags (for individual tasks)

or the timing of the task management command (for task groups) and

that the task management action is executed synchronously -- i.e., no
message involving an aborted task will be seen by the SCSI initiator

after receiving the task management response. IniSCSI, initiators

and targets interact asynchronously over several connections. iSCSI
specifies the protocol mechanism and implementation requirements
needed to present a synchronous SCSI view while using an asynchronous
iISCSI infrastructure.

4.2.6. iISCSI Connection Termination

An iSCSI connection may be terminated via a transport connection
shutdown or a transport reset. A transport reset is assumed to be an
exceptional event.

Graceful TCP connection shutdowns are done by sending TCP FINs. A
graceful transport connection shutdown SHOULD only be initiated by
either party when the connection is not in the iSCSI Full Feature

Phase. A target MAY terminate a Full Feature Phase connection on
internal exception events, but it SHOULD announce the fact through an
Asynchronous Message PDU. Connection termination with outstanding
commands may require recovery actions.

If a connection is terminated while in the Full Feature Phase,
connection cleanup (see Section 7.14) is required prior to recovery.
By doing connection cleanup before starting recovery, the initiator
and target will avoid receiving stale PDUs after recovery.

4.2.7. iISCSI Names

Both targets and initiators require names for the purpose of
identification. In addition, names enable iISCSI storage resources to

be managed, regardless of location (address). An iSCSI Node Name is
also the SCSI device name contained in the iISCSI node. The iSCSI
name of a SCSI device is the principal object used in authentication

of targets to initiators and initiators to targets. This name is

also used to identify and manage iSCSI storage resources.

iISCSI names must be unique within the operation domain of the end
user. However, because the operation domain of an IP network is
potentially worldwide, the iISCSI name formats are architected to be
worldwide unique. To assist naming authorities in the construction
of worldwide unique names, iSCSI provides three name formats for
different types of naming authorities.

Chadalapaka, et al. Standards Track [Page 47]

RFC 7143 iISCSI (Consolidated) April 2014

iISCSI names are associated with iISCSI nodes, and not iSCSI network
adapter cards, to ensure that the replacement of network adapter
cards does not require reconfiguration of all SCSI and iSCSI resource
allocation information.

Some SCSI commands require that protocol-specific identifiers be
communicated within SCSI CDBs. See Section 2.2 for the definition of
the SCSI port name/identifier for iISCSI ports.

An initiator may discover the iSCSI Target Names to which it has
access, along with their addresses, using the SendTargets Text
Request, or other techniques discussed in [RFC3721].

iISCSI equipment that needs discovery functions beyond SendTargets
SHOULD implement iSNS (see [RFC4171]) for extended discovery
management capabilities and interoperability. Although [RFC3721]
implies an SLP ([RFC2608]) implementation requirement, SLP has not
been widely implemented or deployed for use with iSCSI in practice.
iISCSI implementations therefore SHOULD NOT rely on SLP-based
discovery interoperability.

4.2.7.1. iSCSI Name Properties

Each iSCSI node, whether it is an initiator, a target, or both, MUST
have an iSCSI name. Whenever an iSCSI node contains an iSCSI
initiator node and an iSCSI target node, the iISCSI Initiator Name
MUST be the same as the iISCSI Target Name for the contained Nodes
such that there is only one iISCSI Node Name for the iISCSI node
overall. Note the related requirements in Section 9.2.1 on how to

map CHAP names to iSCSI names in such a scenario.

Initiators and targets MUST support the receipt of iISCSI names of up
to the maximum length of 223 bytes.

The initiator MUST present both its iSCSI Initiator Name and the
iISCSI Target Name to which it wishes to connect in the first Login
Request of a new session or connection. The only exception is if a
Discovery session (see Section 4.3) is to be established. In this
case, the iSCSI Initiator Name is still required, but the iSCSI
Target Name MAY be omitted.

iISCSI names have the following properties:

- ISCSI names are globally unigue. No two initiators or targets
can have the same name.

- ISCSI names are permanent. An iSCSI initiator node or target
node has the same name for its lifetime.

Chadalapaka, et al. Standards Track [Page 48]

RFC 7143 iISCSI (Consolidated) April 2014

- iISCSI names do not imply a location or address. An iSCSI
initiator or target can move or have multiple addresses. A
change of address does not imply a change of hame.

- iISCSI names do not rely on a central name broker; the naming
authority is distributed.

- iISCSI names support integration with existing unique naming
schemes.

- ISCSI names rely on existing naming authorities. iISCSI does not
create any new naming authority.

The encoding of an iISCSI name has the following properties:

- ISCSI names have the same encoding method, regardless of the
underlying protocols.

- iISCSI names are relatively simple to compare. The algorithm for
comparing two iSCSI names for equivalence does not rely on an
external server.

- ISCSI names are composed only of printable ASCII and Unicode
characters. iISCSI names allow the use of international
character sets, but uppercase characters are prohibited. The
iISCSI stringprep profile [RFC3722] maps uppercase characters to
lowercase and SHOULD be used to prepare iSCSI names from input
that may include uppercase characters. No whitespace characters
are used in iISCSI names; see [RFC3722] for detalils.

- iISCSI names may be transported using both binary and ASCII-based
protocols.

An iSCSI name really names a logical software entity and is not tied
to a port or other hardware that can be changed. For instance, an
Initiator Name should name the iSCSI initiator node, not a particular
NIC or HBA. When multiple NICs are used, they should generally all
present the same iSCSI Initiator Name to the targets, because they
are simply paths to the same SCSI layer. In most operating systems,
the named entity is the operating system image.

Similarly, a target name should not be tied to hardware interfaces
that can be changed. A target name should identify the logical
target and must be the same for the target, regardless of the
physical portion being addressed. This assists iSCSI initiators in
determining that the two targets it has discovered are really two
paths to the same target.

Chadalapaka, et al. Standards Track [Page 49]

RFC 7143 iISCSI (Consolidated) April 2014

The iSCSI name is designed to fulfill the functional requirements for
Uniform Resource Names (URNs) [RFC1737]. For example, it is required
that the name have a global scope, be independent of address or
location, and be persistent and globally unique. Names must be
extensible and scalable with the use of naming authorities. The name
encoding should be both human and machine readable. See [RFC1737]
for further requirements.

4.2.7.2. iSCSI Name Encoding

An iSCSI name MUST be a UTF-8 (see [RFC3629]) encoding of a string of
Unicode characters with the following properties:

- It is in Normalization Form C (see "Unicode Normalization Forms"
[UNICODE])).

- It only contains characters allowed by the output of the iISCSI
stringprep template (described in [RFC3722)).

- The following characters are used for formatting iSCSI names:
dash ('-'=U+002d)
dot (".’=U+002¢)
colon (:'=U+003a)

- The UTF-8 encoding of the name is not larger than 223 bytes.

The stringprep process is described in [RFC3454]; iISCSI's use of the
stringprep process is described in [RFC3722]. The stringprep process
is a method designed by the Internationalized Domain Name (IDN)
working group to translate human-typed strings into a format that can
be compared as opaque strings. iSCSI names are expected to be used
by administrators for purposes such as system configuration; for this
reason, characters that may lead to human confusion among different
iISCSI names (e.g., punctuation, spacing, diacritical marks) should be
avoided, even when such characters are allowed as stringprep
processing output by [RFC3722]. The stringprep process also converts
strings into equivalent strings of lowercase characters.

The stringprep process does not need to be implemented if the names
are generated using only characters allowed as output by the
stringprep processing specified in [RFC3722]. Those allowed
characters include all ASCII lowercase and numeric characters, as

well as lowercase Unicode characters as specified in [RFC3722]. Once
iISCSI names encoded in UTF-8 are "normalized" as described in this
section, they may be safely compared byte for byte.

Chadalapaka, et al. Standards Track [Page 50]

RFC 7143 iISCSI (Consolidated) April 2014

4.2.7.3. iISCSI Name Structure

An iSCSI name consists of two parts -- a type designator followed by
a unique name string.

iISCSI uses three existing naming authorities in constructing globally
unigue iISCSI names. The type designator in an iSCSI name indicates
the naming authority on which the name is based. The three iSCSI
name formats are the following:

a) iISCSI-Qualified Name: based on domain names to identify a
naming authority

b) NAA format Name: based on a naming format defined by [FC-FS3]
for constructing globally unique identifiers, referred to as
the Network Address Authority (NAA)

c) EUI format Name: based on EUI names, where the IEEE
Registration Authority assists in the formation of worldwide
unique names (EUI-64 format)

The corresponding type designator strings currently defined are:
a) ign. - iISCSI Qualified name

b) naa. - Remainder of the string is an INCITS T11-defined Network
Address Authority identifier, in ASCII-encoded hexadecimal

c) eui. - Remainder of the string is an IEEE EUI-64 identifier, in
ASCIl-encoded hexadecimal

These three naming authority designators were considered sufficient
at the time of writing this document. The creation of additional

naming type designators for iISCSI may be considered by the IETF and
detailed in separate RFCs.

Chadalapaka, et al. Standards Track [Page 51]

RFC 7143 iISCSI (Consolidated) April 2014

The following table summarizes the current SCSI transport protocols
and their naming formats.

SCSI Transport Protocol Naming Format
+ R S T
| | EUI-64| NAA |ION |
S [y i
| ISCSI (Internet SCSI) | X | X | X |
| o
| FCP (Fibre Channel) | | X | |
| _________
| SAS (Serial Attached SCS) | | X | |
+ + S SR —

4.2.7.4. Type "ign." (iISCSI Qualified Name)

This iISCSI name type can be used by any organization that owns a
domain name. This naming format is useful when an end user or
service provider wishes to assign iISCSI names for targets and/or
initiators.

To generate names of this type, the person or organization generating
the name must own a registered domain name. This domain name does
not have to resolve to an address; it just needs to be reserved to
prevent others from generating iISCSI names using the same

domain name.

Since a domain name can expire, be acquired by another entity, or may
be used to generate iISCSI names by both owners, the domain name must
be additionally qualified by a date during which the naming authority
owned the domain name. A date code is provided as part of the "ign."
format for this reason.

The iSCSI qualified name string consists of:

- The string "ign.", used to distinguish these names from "eui."
formatted names.

- A date code, in yyyy-mm format. This date MUST be a date during
which the naming authority owned the domain name used in this
format and SHOULD be the first month in which the domain name
was owned by this naming authority at 00:01 GMT of the first day
of the month. This date code uses the Gregorian calendar. All
four digits in the year must be present. Both digits of the
month must be present, with January == "01" and December ==
"12". The dash must be included.

-Adot"."

Chadalapaka, et al. Standards Track [Page 52]

RFC 7143 iISCSI (Consolidated) April 2014

- The reverse domain name of the naming authority (person or
organization) creating this iSCSI name.

- An optional, colon (:)-prefixed string within the character set
and length boundaries that the owner of the domain name deems
appropriate. This may contain product types, serial numbers,
host identifiers, or software keys (e.qg., it may include colons
to separate organization boundaries). With the exception of the
colon prefix, the owner of the domain name can assign everything
after the reverse domain name as desired. Itis the
responsibility of the entity that is the naming authority to
ensure that the iSCSI names it assigns are worldwide unique.
For example, "Example Storage Arrays, Inc." might own the domain
name "example.com".

The following are examples of iISCSI qualified names that might be
generated by "EXAMPLE Storage Arrays, Inc.”

Naming String defined by
Type Date Auth "example.com" naming authority
Fot et + + + +

ign.2001-04.com.example:storage:diskarrays-sn-a8675309
ign.2001-04.com.example
ign.2001-04.com.example:storage.tapel.sysl.xyz
ign.2001-04.com.example:storage.disk2.sys1.xyz

4.2.7.5. Type "eui." (IEEE EUI-64 Format)
The IEEE Registration Authority provides a service for assigning
globally unigue identifiers [EUI]. The EUI-64 format is used to
build a global identifier in other network protocols. For example,
Fibre Channel defines a method of encoding it into a WorldWideName.
For more information on registering for EUI identifiers, see [OUI].

The format is "eui." followed by an EUI-64 identifier (16 ASCII-
encoded hexadecimal digits).

Example iSCSI name:

Type EUI-64 identifier (ASCII-encoded hexadecimal)

I |
eui.02004567A425678D

Chadalapaka, et al. Standards Track [Page 53]

RFC 7143 iISCSI (Consolidated) April 2014

The IEEE EUI-64 iSCSI name format might be used when a manufacturer
is already registered with the IEEE Registration Authority and uses
EUI-64 formatted worldwide unique names for its products.

More examples of name construction are discussed in [RFC3721].
4.2.7.6. Type "naa." (Network Address Authority)

The INCITS T11 Framing and Signaling Specification [FC-FS3] defines a
format called the Network Address Authority (NAA) format for
constructing worldwide unique identifiers that use various identifier
registration authorities. This identifier format is used by the

Fibre Channel and SAS SCSI transport protocols. As FC and SAS
constitute a large fraction of networked SCSI ports, the NAA format

is a widely used format for SCSI transports. The objective behind
iISCSI supporting a direct representation of an NAA format Name is to
facilitate construction of a target device name that translates

easily across multiple namespaces for a SCSI storage device
containing ports served by different transports. More specifically,

this format allows implementations wherein one NAA identifier can be
assigned as the basis for the SCSI device name for a SCSI target with
both SAS ports and iSCSI ports.

The iSCSI NAA naming format is "naa.", followed by an NAA identifier
represented in ASCII-encoded hexadecimal digits.

An example of an iISCSI name with a 64-bit NAA value follows:

Type NAA identifier (ASCIll-encoded hexadecimal)

[l I
naa.52004567BA64678D

An example of an iISCSI name with a 128-bit NAA value follows:

Type NAA identifier (ASCIll-encoded hexadecimal)
+-—++ +

|1l I
naa.62004567BA64678D0123456789ABCDEF

The iSCSI NAA naming format might be used in an implementation when
the infrastructure for generating NAA worldwide unique names is

already in place because the device contains both SAS and iSCSI SCSI
ports.

Chadalapaka, et al. Standards Track [Page 54]

RFC 7143 iISCSI (Consolidated) April 2014

The NAA identifier formatted in an ASCII-hexadecimal representation
has a maximum size of 32 characters (128-bit NAA format). As a
result, there is no issue with this naming format exceeding the
maximum size for iISCSI Node Names.

4.2.8. Persistent State

iISCSI does not require any persistent state maintenance across
sessions. However, in some cases, SCSI requires persistent
identification of the SCSI initiator port name (see Sections 4.4.2
and 4.4.3.)

iISCSI sessions do not persist through power cycles and boot
operations.

All iSCSI session and connection parameters are reinitialized on
session and connection creation.

Commands persist beyond connection termination if the session
persists and command recovery within the session is supported.
However, when a connection is dropped, command execution, as
perceived by iSCSI (i.e., involving iISCSI protocol exchanges for the
affected task), is suspended until a new allegiance is established by
the "TASK REASSIGN" task management function. See Section 11.5.

4.2.9. Message Synchronization and Steering

iISCSI presents a mapping of the SCSI protocol onto TCP. This
encapsulation is accomplished by sending iISCSI PDUs of varying
lengths. Unfortunately, TCP does not have a built-in mechanism for
signaling message boundaries at the TCP layer. iSCSI overcomes this
obstacle by placing the message length in the iISCSI message header.
This serves to delineate the end of the current message as well as

the beginning of the next message.

In situations where IP packets are delivered in order from the
network, iSCSI message framing is not an issue and messages are
processed one after the other. In the presence of IP packet
reordering (i.e., frames being dropped), legacy TCP implementations
store the "out of order" TCP segments in temporary buffers until the
missing TCP segments arrive, at which time the data must be copied to
the application buffers. In iSCSI, it is desirable to steer the SCSI
data within these out-of-order TCP segments into the preallocated
SCSI buffers rather than store them in temporary buffers. This
decreases the need for dedicated reassembly buffers as well as the
latency and bandwidth related to extra copies.

Chadalapaka, et al. Standards Track [Page 55]

RFC 7143 iISCSI (Consolidated) April 2014

Relying solely on the "message length" information from the iSCSI
message header may make it impossible to find iSCSI message
boundaries in subsequent TCP segments due to the loss of a TCP
segment that contains the iISCSI message length. The missing TCP
segment(s) must be received before any of the following segments can

be steered to the correct SCSI buffers (due to the inability to

determine the iSCSI message boundaries). Since these segments cannot
be steered to the correct location, they must be saved in temporary
buffers that must then be copied to the SCSI buffers.

Different schemes can be used to recover synchronization. The

details of any such schemes are beyond this protocol specification,

but it suffices to note that [RFC4297] provides an overview of the

direct data placement problem on IP networks, and [RFC5046] specifies
a protocol extension for iISCSI that facilitates this direct data

placement objective. The rest of this document refers to any such
direct data placement protocol usage as an example of a "Sync and
Steering layer".

Under normal circumstances (no PDU loss or data reception out of
order), iISCSI data steering can be accomplished by using the
identifying tag and the data offset fields in the iISCSI header in

addition to the TCP sequence number from the TCP header. The
identifying tag helps associate the PDU with a SCSI buffer address,
while the data offset and TCP sequence number are used to determine
the offset within the buffer.

4.2.9.1. Sync/Steering and iSCSI PDU Length

When a large iSCSI message is sent, the TCP segment(s) that contains
the iSCSI header may be lost. The remaining TCP segment(s) up to the
next iISCSI message must be buffered (in temporary buffers) because
the iSCSI header that indicates to which SCSI buffers the data are to

be steered was lost. To minimize the amount of buffering, it is
recommended that the iISCSI PDU length be restricted to a small value
(perhaps a few TCP segments in length). During login, each end of

the iISCSI session specifies the maximum iSCSI PDU length it will
accept.

4.3. iSCSI Session Types
iISCSI defines two types of sessions:

a) Normal operational session - an unrestricted session.

Chadalapaka, et al. Standards Track [Page 56]

RFC 7143 iISCSI (Consolidated) April 2014

b) Discovery session - a session only opened for target discovery.
The target MUST ONLY accept Text Requests with the SendTargets
key and a Logout Request with reason "close the session". All
other requests MUST be rejected.

The session type is defined during login with the SessionType=value
parameter in the login command.

4.4. SCSI-to-iSCSI Concepts Mapping Model

The following diagram shows an example of how multiple iISCSI nodes
(targets in this case) can coexist within the same Network Entity and
can share Network Portals (IP addresses and TCP ports). Other more
complex configurations are also possible. For detailed descriptions

of the components of these diagrams, see Section 4.4.1.

+ +
| Network Entity (iSCSI Client) |
I I
| R —— + |
| | iISCSI Node | [
| | (Initiator) | |
| S — + |
I | I
| + + + + |
| [INetwork Portal| [Network Portal| |
[| 192.0.2.4 || 192.0.2.5 ||
I |
| IP Networks |
I I
+-+ +-+ +-+

| [INetwork Portal| [Network Portal| |
[1198.51.100.21 | |198.51.100.3 ||

| | TCP Port 3260| | TCP Port 3260] |
| + + + + |

|

|

|

| + + + +
| | ISCSI Node ||iSCSI Node | |
|| (Target) || (Target)
| +
|

|

| |
++ + |

I
Network Entity (iSCSI Server) |

Chadalapaka, et al. Standards Track [Page 57]

RFC 7143 iISCSI (Consolidated) April 2014

4.4.1. iSCSI Architecture Model

This section describes the part of the iISCSI Architecture Model that
has the most bearing on the relationship between iSCSI and the SCSI
Architecture Model.

Network Entity - represents a device or gateway that is
accessible from the IP network. A Network Entity must have one
or more Network Portals (see the "Network Portal" item below),
each of which can be used by some iSCSI nodes (see the next
item) contained in that Network Entity to gain access to the IP
network.

iISCSI Node - represents a single iSCSI initiator or iISCSI

target, or an instance of each. There are one or more iSCSI
nodes within a Network Entity. The iSCSI node is accessible via
one or more Network Portals (see below). An iSCSI node is
identified by its iISCSI name (see Sections 4.2.7 and 13). The
separation of the iISCSI name from the addresses used by and for
the iISCSI node allows multiple iSCSI nodes to use the same
addresses and allows the same iSCSI node to use multiple
addresses.

An alias string may also be associated with an iSCSI node. The
alias allows an organization to associate a user-friendly string
with the iISCSI name. However, the alias string is not a
substitute for the iSCSI name.

Network Portal - a component of a Network Entity that has a
TCP/IP network address and that may be used by an iSCSI node
within that Network Entity for the connection(s) within one of

its ISCSI sessions. In an initiator, it is identified by its IP
address. In atarget, it is identified by its IP address and

its listening TCP port.

Portal Groups - iISCSI supports multiple connections within the
same session; some implementations will have the ability to
combine connections in a session across multiple Network
Portals. A portal group defines a set of Network Portals within
an iSCSI node that collectively supports the capability of
coordinating a session with connections that span these portals.
Not all Network Portals within a portal group need to

participate in every session connected through that portal
group. One or more portal groups may provide access to an iSCSI
node. Each Network Portal, as utilized by a given iSCSI node,
belongs to exactly one portal group within that node. Portal
groups are identified within an iISCSI node by a Portal Group
Tag, a simple unsigned integer between 0 and 65535 (see

Chadalapaka, et al. Standards Track [Page 58]

RFC 7143 iISCSI (Consolidated) April 2014

Section 13.9). All Network Portals with the same Portal Group
Tag in the context of a given iSCSI node are in the same portal
group.

Both iSCSI initiators and iSCSI targets have portal groups,
though only the iSCSI target portal groups are used directly in
the iSCSI protocol (e.g., in SendTargets). For references to
the initiator portal Groups, see Section 10.1.2.

- Portals within a portal group should support similar session
parameters, because they may participate in a common session.

The following diagram shows an example of one such configuration on a
target and how a session that shares Network Portals within a portal
group may be established.

IP Network---------------------
I I I

Fommn| e [----+ e +

| + ++ + | S +

| | Network | | Network | | | | Network | |

| | Portal || Portal | | | | Portal | |

| + + + + | | B — + |

|| I I

| | Portal |] | | Portal |

| | Groupl | | | | Group 2 |

+ + S — +

I I I

+ I I I +
I I I I I
| + + + + |
| | ISCSI Session (Target side)| | iISCSI Session (Target side)| |
N N
[(TSIH = 56) || (TSIH = 48) [
| + + + + |
I I
| iSCSI Target Node |
| (within Network Entity, not shown) |
+ +

4.4.2. SCSI Architecture Model
This section describes the relationship between the SCSI Architecture
Model [SAMZ2] and constructs of the SCSI device, SCSI portand I_T
nexus, and the iISCSI constructs described in Section 4.4.1.

This relationship implies implementation requirements in order to
conform to the SAM-2 model and other SCSI operational functions.

Chadalapaka, et al. Standards Track [Page 59]

RFC 7143 iISCSI (Consolidated) April 2014

These requirements are detailed in Section 4.4.3.

The following list outlines mappings of SCSI architectural elements
to iSCSI.

a) SCSI Device - This is the SAM-2 term for an entity that
contains one or more SCSI ports that are connected to a service
delivery subsystem and supports a SCSI application protocol.
For example, a SCSI initiator device contains one or more SCSI
initiator ports and zero or more application clients. A SCSI
target device contains one or more SCSI target ports and one or
more LUs. For iSCSI, the SCSI device is the component within
an iSCSI node that provides the SCSI functionality. As such,
there can be at most one SCSI device within an iISCSI node.
Access to the SCSI device can only be achieved in an iSCSI
Normal operational session (see Section 4.3). The SCSI device
name is defined to be the iISCSI name of the node and MUST be
used in the iSCSI protocol.

b) SCSI Port - This is the SAM-2 term for an entity in a SCSI
device that provides the SCSI functionality to interface with a
service delivery subsystem or transport. For iSCSI, the
definitions of the SCSI initiator port and the SCSI target port
are different.

SCSl initiator port: This maps to one endpoint of an iISCSI
Normal operational session (see Section 4.3). An iSCSI Normal
operational session is negotiated through the login process
between an iSCSI initiator node and an iSCSI target node. At
successful completion of this process, a SCSI initiator port is
created within the SCSI initiator device. The SCSI initiator

port Name and SCSiI initiator port Identifier are both defined

to be the iSCSI Initiator Name together with (a) a label that
identifies it as an initiator port name/identifier and (b) the

ISID portion of the session identifier.

SCSI target port: This maps to an iSCSI target portal group.
The SCSI Target Port Name and the SCSI Target Port Identifier
are both defined to be the iISCSI Target Name together with (a)
a label that identifies it as a target port name/identifier and

(b) the Target Portal Group Tag.

The SCSI port name MUST be used in iISCSI. When used in SCSI
parameter data, the SCSI port name MUST be encoded as:

1) the iISCSI name in UTF-8 format, followed by

2) a comma separator (1 byte), followed by

Chadalapaka, et al. Standards Track [Page 60]

RFC 7143 iISCSI (Consolidated) April 2014

3) the ASCII character i’ (for SCSI initiator port) or the
ASCII character 't' (for SCSI target port) (1 byte),
followed by

4) a comma separator (1 byte), followed by

5) a text encoding as a hex-constant (see Section 6.1) of the
ISID (for SCSI initiator port) or the Target Portal Group
Tag (for SCSI target port), including the initial 0X or Ox
and the terminating null (15 bytes for iISCSI initiator port,

7 bytes for iISCSI target port).

The ASCII character 'i’ or 't’ is the label that identifies
this port as either a SCSI initiator port or a SCSI target
port.

c) I_T nexus - This indicates a relationship between a SCSI
initiator port and a SCSI target port, according to [SAMZ2].
For iSCSI, this relationship is a session, defined as a
relationship between an iSCSI initiator’s end of the session
(SCsil initiator port) and the iISCSI target’s portal group. The
I_T nexus can be identified by the conjunction of the SCSI port
names or by the iSCSI session identifier (SSID). iSCSI defines
the |_T nexus identifier to be the tuple (iISCSI Initiator Name
+"i,0x" + ISID in text format, iISCSI Target Name + ",t,0x" +
Target Portal Group Tag in text format). An uppercase hex
prefix "0X" may alternatively be used in place of "0x".

NOTE: The I_T nexus identifier is not equal to the SSID.
4.4.3. Consequences of the Model

This section describes implementation and behavioral requirements
that result from the mapping of SCSI constructs to the iSCSI
constructs defined above. Between a given SCSI initiator port and a
given SCSI target port, only one |_T nexus (session) can exist. No
more than one nexus relationship (parallel nexus) is allowed by
[SAM2]. Therefore, at any given time, only one session with the same
SSID can exist between a given iSCSI initiator node and an iSCSI
target node.

These assumptions lead to the following conclusions and requirements:
ISID RULE: Between a given iSCSI initiator and iSCSI target portal
group (SCSI target port), there can only be one session with a given

value for the ISID that identifies the SCSI initiator port. See
Section 11.12.5.

Chadalapaka, et al. Standards Track [Page 61]

RFC 7143 iISCSI (Consolidated) April 2014

The structure of the ISID that contains a naming authority component
(see Section 11.12.5 and [RFC3721]) provides a mechanism to
facilitate compliance with the ISID RULE. See Section 10.1.1.

The iSCSI initiator node should manage the assignment of ISIDs prior
to session initiation. The "ISID RULE" does not preclude the use of
the same ISID from the same iSCSI initiator with different target
portal groups on the same iSCSI target or on other iSCSI targets (see
Section 10.1.1). Allowing this would be analogous to a single SCSI
initiator port having relationships (nexus) with multiple SCSI target
ports on the same SCSI target device or SCSI target ports on other
SCSIl target devices. It is also possible to have multiple sessions

with different ISIDs to the same target portal group. Each such
session would be considered to be with a different initiator even

when the sessions originate from the same initiator device. The same
ISID may be used by a different iISCSI initiator because it is the

iISCSI name together with the I1SID that identifies the SCSI initiator
port.

NOTE: A consequence of the ISID RULE and the specification for the
I_T nexus identifier is that two nexuses with the same identifier
should never exist at the same time.

TSIH RULE: The iSCSI target selects a non-zero value for the TSIH at
session creation (when an initiator presents a 0 v