I nt ernet Engi neering Task Force (I ETF) B. Li nowski

Request for Comments: 6095 TCS/ Noki a Si emens Net wor ks
Cat egory: Experi nental M Ersue
| SSN: 2070-1721 Noki a Si enens Networ ks
S. Kuryla

360 Treasury Systens

March 2011

Ext endi ng YANG wi th Language Abstractions
Abst r act

YANG -- the Network Configuration Protocol (NETCONF) Data Mbdeling
Language -- supports nodeling of a tree of data el enents that
represent the configuration and runtine status of a particular
networ k el ement nmanaged via NETCONF. This nenp suggests enhancing
YANG wi t h suppl ementary nodeling features and | anguage abstractions
with the aimto inprove the nodel extensibility and reuse.

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
publ i shed for exam nation, experinental inplenentation, and
eval uati on.

Thi s docunent defines an Experinmental Protocol for the Internet
community. This docunent is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the | ETF
comunity. |t has received public review and has been approved for
publication by the Internet Engineering Steering Goup (IESG. Not
al |l docunents approved by the | ESG are a candi date for any |evel of
Internet Standard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww rfc-editor.org/info/rfc6095.

Li nowski, et al. Experi ment al [Page 1]

RFC 6095 YANG Language Abstractions March 2011

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with

to this docunent.

of

respect

Code Conponents extracted fromthis docunent nust

include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided w thout warranty
described in the Sinplified BSD License.

Tabl e of Contents

1

il

NNNNNNNNNNNNN

I ntroduction .

Key Words

Mot i vation . .
Model i ng Inprovenents mnth Language Abstractlons.
Desi gn Approach -

Mbdel i ng Resource Nbdels mnth YANG -

1. Exanple of a Physical Network Resource Nbdel

5
. 5.
nplex Types

Definition .

conpl ex-type ExtenS|on Statenent

i nst ance Ext ension Statenent

i nstance-1ist Extension Statenent

ext ends Extension Statenent

abstract Extension Statenent

XML Encodi ng Rul es

Type Encodi ng Rul es .

Ext ensi on and Feature Deflnltlon Nbdule
10. Exanpl e Mbdel for Conpl ex Types
11. NETCONF Payl oad Exanple . . .
12. Update Rules for Modul es Uslng Conplex Types
13. Using Conpl ex Types . . .
2.13.1. Overriding Conplex Type Data Nodes
2.13.2. Augnenting Conplex Types
2.13.3. Controlling the Use of Cbnplex Types
Typed I nstance ldentifier

@S”?*?’?‘PF”PJF‘Q*‘F‘U‘PF”P’E

.1. Definition .
.2. instance-type Exten5|on Statenent
.3. Typed Instance ldentifier Exanple

I ANA Consi der ati ons
Security Considerations

Li nowski, et al. Experi ment al

2. Modeling Entlty MB Entries as PhyS|caI Resour ces

as

RFC 6095 YANG Language Abstractions March 2011

6. Acknow edgenments 32

7. References 32

7.1. Normmtive References 32

7.2. Informative References 32
Appendi x A. YANG Modul es for Physical Network Resource Mde

and Hardware Entities Model 34

Appendi x B. Exanpl e YANG Modul e for the | PFI X PSAMP Model 40

B.1. Modeling Inprovenents for the |PFI X PSAMP Model with

B.2. | PFI X/ PSAMP Mbdel with Conpl ex Types and Typed

Conpl ex Types and Typed |Instance ldentifiers 40

Instance ldentifiers 41

1. Introduction

YANG -- the NETCONF Data Mddel i ng Language [RFC6020] -- supports
nmodel ing of a tree of data elenents that represent the configuration
and runtine status of a particular network el enent nanaged via
NETCONF. This docunent defines extensions for the nodeling | anguage
YANG as new | anguage statenents, which introduce | anguage
abstractions to inprove the nodel extensibility and reuse. The
docunent reports from nodeling experience in the tel ecommunication

i ndustry and gi ves nodel exanples froman actual network nmanagenent
systemto highlight the value of proposed | anguage extensions,
especially class inheritance and recursiveness. The |anguage
extensions defined in this docunent have been inplenented with two
open source tools. These tools have been used to validate the nodel
exanpl es through the document. |If this experinental specification
results in successful usage, it is possible that the |anguage

ext ensi ons defined herein could be updated to incorporate

i npl enent ati on and depl oynent experience, then pursued on the

St andards Track, possibly as part of a future version of YANG

1.1.

Key Words

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "NOT RECOMMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in BCP

14,
1.2.

Fol

[RFC2119].
Moti vati on

| owi ng are non-exhaustive notivation exanpl es highlighting usage

scenarios for |anguage abstractions.

(o]

Many systens today have a Managenment |nfornmati on Base (M B) that
in effect is organized as a tree build of recursively nested
cont ai ner nodes. For exanple, the physical resources in the
ENTI TY-M B conceptual ly forma contai nnent tree. The index

Li nowski, et al. Experi ment al [Page 3]

RFC 6095 YANG Language Abstractions March 2011

ent Physi cal Contai nedln points to the containing entity in a flat

list. The ability to represent nested, recursive data structures
of arbitrary depth would enable the representation of the primary
cont ai nment hi erarchy of physical entities as a node tree in the

server MB and in the NETCONF payl oad.

0 A nmanager scanning the network in order to update the state of an
i nventory nanagenent system m ght be only interested in data
structures that represent a specific type of hardware. Such a
manager would then |l ook for entities that are of this specific
type, including those that are an extension or specialization of
this type. To support this use case, it is helpful to bear the
corresponding type information within the data structures, which
descri be the network el ement hardware

0 A systemthat is managi ng network el enents is concerned, e.g.
wi th managed obj ects of type "plug-in nodul es” that have a name, a
version, and an activation state. |In this context, it is usefu
to define the "plug-in nodule" as a concept that is supposed to be
further detailed and extended by additional concrete nodel
elements. In order to realize such a system it is worthwhile to
nodel abstract entities, which enable reuse and ease concrete
refinements of that abstract entity in a second step

0 As particular network el ements have specific types of conponents
that need to be nanaged (CS i nages, plug-in nodul es, equi pnent,
etc.), it should be possible to define concrete types, which
descri be the nmanaged object precisely. By using type-safe
ext ensi ons of basic concepts, a systemin the manager role can
safely and explicitly determne that e.g., the "equipnent" is
actually of type "network card"

o Currently, different SDOs are working on the harnonization of
t hei r managenent information nodels. Oten, a nodel napping or
transformati on between systens becones necessary. The
har noni zati on of the nodels is done e.g., by nmapping of the two
nodel s on the object level or integrating an object hierarchy into
an existing informati on nodel. On the one hand, extending YANG
wi th | anguage abstractions can sinplify the adoption of |ETF
resource nodels by other SDOs and facilitate the alignnent with
other SDOs’ resource nodels (e.g., TMForumSID [SID V8]). On the
ot her hand, the proposed YANG extensions can enable the
utilization of the YANG nodel i ng | anguage in other SDOs, which
usual Iy nodel conpl ex managenent systens in a top-down nmanner and
use high-level |anguage features frequently.

Li nowski, et al. Experi ment al [Page 4]

RFC 6095 YANG Language Abstractions March 2011

This meno specifies additional nodeling features for the YANG

| anguage in the area of structured nodel abstractions, typed
references, as well as recursive data structures, and it discusses
how t hese new features can inprove the nodeling capabilities of YANG

Section 1.5.1 contains a physical resource nodel that deals with sone
of the nodeling challenges illustrated above. Section 1.5.2 gives an
exanpl e that uses the base classes defined in the physical resource
nodel and derives a nodel for physical entities defined in the Entity
M B.

1.3. Modeling Inprovenents with Language Abstractions

As an enhancenent to YANG 1.0, conplex types and typed instance
identifiers provide different technical inprovenents on the nodeling
| evel

0 In case the nodel of a systemthat should be managed wi th NETCONF
makes use of inheritance, conplex types enable an al nbost one-to-
one nmappi ng between the classes in the original nodel and the YANG
nodul e.

o Typed instance identifiers allow representing associ ati ons between
the concepts in a type-safe way to prevent type errors caused by
referring to data nodes of inconpatible types. This avoids
referring to a particular location in the MB. Referring to a
particular location in the MB is not mandated by the domain
nodel .

0 Conplex types allow defining conplete, self-contained type

definitions. It is not necessary to explicitly add a key
statenment to lists, which use a grouping that defines the data
nodes.

o Complex types sinplify concept refinenent by extending a base
conpl ex type and nake it superfluous to represent concept
refinements with workarounds such as huge choice-statenents with
conpl ex branches.

0 Abstract conplex types ensure correct usage of abstract concepts
by enforcing the refinenent of a common set of properties before
instantiation.

0 Conplex types allow defining recursive structures. This enables

representing conplex structures of arbitrary depth by nesting
i nstances of basic conmplex types that may contain thensel ves.

Li nowski, et al. Experi ment al [Page 5]

RFC 6095 YANG Language Abstractions March 2011

0 Conplex types avoid introducing netadata types (e.g., type code
enunerations) and netadata |l eafs (e.g., leafs containing a type
code) to indicate which concrete type of object is actually
represented by a generic container in the MB. This also avoids
explicitly ruling out illegal use of subtype-specific properties
in generic containers.

0 Conplex type instances include the type information in the NETCONF
payl oad. This allows determnmining the actual type of an instance
during the NETCONF payl oad parsing and avoids the use in the node
of additional |eafs, which provide the type information as
content.

0 Conplex types nay be declared explicitly as optional features,
which is not possible when the actual type of an entity
represented by a generic container is indicated with a type code
enuner at i on.

Appendi x B, "Exanple YANG Modul e for the | PFI X/ PSAMP Mdel ", lists
techni cal inprovenments for nodeling with conplex types and typed
instance identifiers and exenplifies the usage of the proposed YANG
ext ensi ons based on the IP Flow Informati on Export (IPFIX) / Packet
Sampl i ng (PSAMP) configuration nodel in [|PFI XCONF].

1.4. Design Approach

The proposed additional features for YANGin this meno are desi gned
to reuse existing YANG statenents whenever possible. Additiona
semantics i s expressed by an extension that is supposed to be used as
a substatenent of an existing statenent.

The proposed features don’'t change the semantics of nodels that is
valid with respect to the YANG specification [RFC6020].

1.5. Mbodeling Resource Mddels with YANG

1.5.1. Exanple of a Physical Network Resource Mde
The di agram bel ow depicts a portion of an information nodel for
manageabl e network resources used in an actual network managenent
system
Note: The referenced nodel (UDM Unified Data Mddel) is based on key

resource nodeling concepts from[SID V8] and is conpliant with
sel ected parts of SID Resource Abstract Business Entities domain

[UDM .

Li nowski, et al. Experi ment al [Page 6]

RFC 6095 YANG Language Abstractions March 2011

The class diagramin Figure 1 and the correspondi ng YANG nodul e
excerpt focus on basic resource ("Resource" and the distinction

bet ween | ogi cal and physical resources) and hardware abstractions
("Hardware", "Equiprent", and "Equi pnentHol der"). Cass attributes
were omtted to achi eve decent readability.

Li nowski, et al. Experi ment al [Page 7]

RFC 6095 YANG Language Abstractions March 2011
S +
| Resour ce
oo +
I\ I\
| |
| S +
| | Logi cal Resource
| - +
I Fom e e e - +
| | Physical | Fommee - +
' -| Resour ce| <| - +- | Physi cal Li nk
toemm --at | +----emem- - - +
| | 0..* physical Li nk
| | equi prrent
| | Hol der
| | 0..*
| | EREEEEE +
| | 0..* hardware | |
| +-------- + - + Fommmm e oo - + |
' - | Har dwar e| <| - +- | ManagedHar dwar e| <| - +- | EqQui prent | <>- - +
e S B + | | Holder]0..1
<> | | +--------- +
0..1] | | <>
| | | | 0..* equi pnent
| | | | Hol der
| | |
| | | | 0..* equi pnent
| | |
| | | | equi pnent
| | | 0..*
| | I e +
| | | | |
| | | e +
| | " - | Equi prent | <>- -+
| | Fomem- - +0..1
| | conposi t eEqui pnent
A +
| ' - | Physi cal Connector|----+0..* source
EEEEEE R R + | Physi ca
physi cal Connector 0..* | | Connect or
e .
0..* target Physi cal Connect or
Fi gure 1: Physical Network Resource Mbdel
Li nowski, et al. Experi ment al [Page 8]

RFC 6095 YANG Language Abstractions March 2011

Since this nodel is an abstraction of network-el enent-specific MB
topol ogi es, nodeling it with YANG creates sone chall enges. Sone of

t hese chal l enges and how they can be addressed with conplex types are
expl ai ned bel ow

(0]

Model i ng of abstract concepts: O asses |ike "Resource" represent
concepts that prinmarily serve as a base class for derived cl asses.
Wth conplex types, such an abstract concept could be represented
by an abstract conplex type (see "conpl ex-type extension
statenment” and "abstract extension statenent").

O ass Inheritance: Information nodels for conpl ex managenent
domai ns often use class inheritance to create specialized cl asses
i ke "Physical Connector" froma nore generic base class (here,
"Hardware"), which itself nmight inherit from another base class
("Physi cal Resource"), etc. Conplex types allow creating enhanced
versions of an existing (abstract or concrete) base type via an
ext ensi on (see "extends extension statement").

Recursive containnment: In order to specify contai nnent

hi erarchi es, nodels frequently contain different aggregation
associations, in which the target (contained elenent) is either
the containing class itself or a base class of the containing
class. In the nodel above, the recursive contai nment of

"Equi pnent Hol der” is an exanple of such a relationship (see the
description for the "conpl ex-type Equi prent Hol der" in the exanple
nodel "udntore" bel ow).

Compl ex types support such a contai nment by using a conplex type
(or one of its ancestor types) as the type of an instance or
instance list that is part of its definition (see "instance(-list)
extension statenent").

Ref erence rel ati onshi ps: A key requirenment on | arge nodels for
networ k domains with many rel ated managed objects is the ability
to define inter-class associations that represent essentia

rel ati onshi ps between instances of such a class. For exanple, the
rel ati onshi p between "Physi cal Li nk" and "Hardware" tells which
physical link is connecting which hardware resources. It is
important to notice that this kind of relationship does not
mandat e any particular location of the two connected hardware
instances in any MB nodule. Such contai nment-agnostic

rel ati onshi ps can be represented by a typed instance identifier

t hat enbodi es one direction of such an association (see Section 3,
"Typed Instance ldentifier").

Li nowski, et al. Experi ment al [Page 9]

RFC 6095 YANG Language Abstractions March 2011

The YANG nodul e excerpt bel ow shows how t he chal |l enges |isted above
can be addressed by the Conpl ex Types extension (nodul e inport prefix
"ct:"). The conplete YANG nodul e for the physical resource nodel in
Figure 1 can be found in Appendix A, "YANG Mdul es for Physica

Net wor k Resource Mddel and Hardware Entities Mdel"

Not e: The YANG ext ensions proposed in this docunent have been

i mpl enented as the open source tools "Pyang Extension for Conplex
Types" [Pyang-ct], [Pyang], and "Libsm Extension for Conplex Types"
[Libsmi]. Al nodel exanples in the docunent have been vali dated
with the tools Pyang-ct and Libsmn.

<CCODE BEG NS>
nmodul e udntore {

nanespace "http://exanpl e. com udntore”
prefix "udni;

i mport ietf-conplex-types {prefix "ct"; }

/1 Basic conplex types..
ct: conpl ex-type Physical Resource {

ct: ext ends Resource;
ct:abstract true;

...
| eaf serial Nunber {
type string;

description Manuf acturer-all ocated part nunber’ as
defined in SID, e.g., the part nunber of a fiber link
cable.";

ct:conpl ex-type Hardware {
ct: extends Physi cal Resource;
ct:abstract true;
...
| eaf -1ist physical Link {
type instance-identifier {ct:instance-type PhysicalLink;}
}

ct:instance-list containedHardware {
ct:instance-type Hardware;

ct:instance-list physical Connector ({
ct:instance-type Physical Connect or

Li nowski, et al. Experi ment al [Page 10]

RFC 6095 YANG Language Abstractions March 2011

ct: conpl ex-type Physi cal Li nk {
ct: ext ends Physi cal Resource;
...
| eaf-1ist hardware {
type instance-identifier {ct:instance-type Hardware;}
}

ct: conpl ex-type ManagedHar dware {
ct: extends Hardware;
ct:abstract true;
I/

ct: conpl ex-type Physi cal Connector {
ct: extends Hardware;
| eaf location {type string;}
...
| eaf -1 i st sourcePhysical Connector {
type instance-identifier {ct:instance-type Physical Connector;}

| eaf -1ist targetPhysical Connector {
type instance-identifier {ct:instance-type Physical Connector;}

ct:conpl ex-type Equi prent {
ct: ext ends ManagedHar dwar e;
/1
ct:instance-list equipnent {
ct:instance-type Equi pnent;

ct: conpl ex-type Equi prnent Hol der {
ct: ext ends ManagedHar dwar e;
description "In the SID V8 definition, this is a class based on
the M 3100 specification. A base class that represents physica
objects that are both nanageable as well as able to host,
hol d, or contain other physical objects. Exanples of physica

Li nowski, et al. Experi ment al [Page 11]

RFC 6095 YANG Language Abstractions March 2011

obj ects that can be represented by instances of this object
class are Racks, Chassis, Cards, and Slots.
A piece of equipnent with the primary purpose of containing
ot her equi prent.";
| eaf vendor Name {type string;}
/1
ct:instance-list equipnent {
ct:instance-type Equi pnent;
}
ct:instance-list equipnentHol der {
ct:instance-type Equi pnent Hol der

}
}
/1
}
<CODE ENDS>

1.5.2. Modeling Entity MB Entries as Physical Resources

The physical resource nodul e descri bed above can now be used to node
physical entities as defined in the Entity MB [RFC4133]. For each
physical entity class listed in the "Physical O ass" enuneration, a
complex type is defined. Each of these conpl ex types extends the

nost specific conplex type already available in the physical resource

nmodul e. For exanple, the type "HWbdul e" extends the conpl ex type
"Equi prent" as a hardware nodul e. Physical entity properties that
shoul d be included in a physical entity conplex type are conbined in
a grouping, which is then used in each conplex type definition of an
entity.

Thi s approach has foll ow ng benefits:
0 The definition of the conplex types for hardware entities becones

conmpact as many of the features can be reused fromthe basic
conpl ex type definition.

0 Physical entities are nodeled in a consistent manner as predefined

concepts are extended.
o Entity-MB-specific attributes as well as vendor-specific

attributes can be added without having to define separate
ext ensi on data nodes.

Li nowski, et al. Experi ment al [Page 12]

RFC 6095 YANG Language Abstractions March 2011

Modul e udntore : Mbdul e hardware-entities
equi prrent
Hol der
0..*
F - +
| |
B - + tmmmmmmaas + |
| ManagedHar dwar e| <| - +- | Equi prent | <>- - +
R L + | | Holder]0..1 +o---- - +
| [<]--------- +--| Chassi s|
Fomm e e o + | F - +
<> Do
|0..* equipment : | AH--------- +
| Hol der ' --| Cont ai ner |
f S +

0..* equi prment

|

|

|

| equi pnent
| *

|

|

0.
Fom oo e +
I I
f S + | :

- | Equi prent | <>- -+ : oo +
| | <l--------- +- - | Whbdul e]
Fomm e e + N R +

conposi t eEqui pnent S
|- '
| - - | Backpl ane
Fomm e e o +

Figure 2: Hardware Entities Mde

Bel ow i s an excerpt of the correspondi ng YANG nodul e usi ng conpl ex
types to nodel hardware entities. The conplete YANG nodule for the
Hardware Entities nodel in Figure 2 can be found in Appendix A "YANG
Modul es for Physical Network Resource Mddel and Hardware Entities
Model ".

Li nowski, et al. Experi ment al [Page 13]

RFC 6095 YANG Language Abstractions March 2011

<CODE BEG NS>

nmodul e hardware-entities {

nanespace "http://exanpl e. conl hardware-entities"”
prefix "hwe";

i mport ietf-yang-types {prefix "yt";}
i mport ietf-conplex-types {prefix "ct";}
i mport udntore {prefix "uc";}

groupi ng Physical EntityProperties {
...
| eaf nfgDate {type yang: date-and-tine; }
leaf-list uris {type string; }

}

/'l Physical entities representing equipnent

ct:conmpl ex-type HWbdul e {
ct: extends uc: Equi pnent;
description "Conplex type representing nodule entries
(ent Physi cal d ass = nodul e(9)) in entPhysical Tabl e"
uses Physical EntityProperti es;

/1
/1l Physical entities representing equiprment hol ders

ct:conpl ex-type Chassis {
ct: extends uc: Equi pnent Hol der;
description "Conplex type representing chassis entries
(ent Physi cal O ass = chassis(3)) in entPhysical Tabl e"
uses Physical EntityProperti es;

}
11
}
<CODE ENDS>

Li nowski, et al. Experi ment al [Page 14]

RFC 6095 YANG Language Abstractions March 2011

2.

2.

2.

1

2.

Compl ex Types
Definition

YANG type concept is currently restricted to sinple types, e.g.
restrictions of prinmtive types, enunerations, or union of sinple

types.

Conpl ex types are types with a rich internal structure, which may be
conmposed of substatenents defined in Table 1 (e.g., lists, leafs,
contai ners, choices). A new conplex type may extend an existing
conplex type. This allows providing type-safe extensions to existing
YANG nodel s as instances of the new type.

Conpl ex types have the follow ng characteristics:

0 Introduction of new types, as a naned, formal description of a
concrete nmanageabl e resource as well as abstract concepts.

0 Types can be extended, i.e., new types can be defined by
speci al i zi ng existing types and addi ng new features. |nstances of
such an extended type can be used wherever instances of the base
type may appear.

o0 The type infornmation is nade part of the NETCONF payload in case a
derived type substitutes a base type. This enables easy and
efficient consunption of payload el ements representing conpl ex
type instances.

conpl ex-type Extension Statenent
The extension statenent "conplex-type" is introduced; it accepts an

arbitrary nunmber of statements that define node trees, anong other
common YANG statenents ("YANG Statenents”, Section 7 of [RFC6020]).

Li nowski, et al. Experi ment al [Page 15]

RFC 6095 YANG Language Abstractions March 2011

| abstract | 1
| anyxni | n |
| choi ce | n
| cont ai ner | n
| description | 1
| ct:instance | n
ct:instance-list	n
ct: extends	1
groupi ng	n
if-feature	.n
key	1
	eaf
	eaf -1i st
list	n
nust	n
or der ed- by	n
reference	1
refine	n
st at us	1
t ypedef	n
uses	n

Tabl e 1: conpl ex-type’s Substat enents

Compl ex type definitions may appear at every place where a grouping
may be defined. That includes the nodule, subnodule, rpc, input,
output, notification, container, and |list statenents.

Conpl ex type nanmes popul ate a distinct namespace. As with YANG
groupings, it is possible to define a conplex type and a data node
(e.g., leaf, list, instance statenents) with the same nane in the
sanme scope. All conplex type nanes defined within a parent node or
at the top level of the nodule or its subnodul es share the sane type
i dentifier namespace. This nanespace is scoped to the parent node or
nodul e.

A compl ex type MAY have an instance key. An instance key is either
defined with the "key" statenment as part of the conplex type or is
inherited fromthe base conplex type. It is not allowed to define an
additional key if the base conplex type or one of its ancestors

al ready defines a key.

Compl ex type definitions do not create nodes in the schema tree.

Li nowski, et al. Experi ment al [Page 16]

RFC 6095 YANG Language Abstractions March 2011

2.3. instance Extension Statenment

The "instance" extension statement is used to instantiate a conpl ex
type by creating a subtree in the managenent information node tree.
The instance statenent takes one argunent that is the identifier of
the conplex type instance. It is followed by a bl ock of
subst at ement s.

The type of the instance is specified with the mandatory "ct:

i nstance-type" substatenent. The type of an instance MJIST be a
compl ex type. Conmon YANG statenents may be used as substatenents of
the "instance" statenent. An instance is optional by default. To
make an instance nmandatory, "nmandatory true" has to be applied as a
subst at enment .

description

config
ct:instance-type

if-feature

mandat ory
nmust

reference
stat us

I I
I I
I I
I I
I I
I I
I I
I I
| when |
I I
I I
I I
I I
I I
I I
I I
I I

(BN

anyxni
choi ce
cont ai ner
ct:instance
ct:instance-1i st
| eaf
|l eaf-11i st
list

Tabl e 2: instance’s Substatenents

The "instance" and "instance-list" extension statenents (see

Section 2.4, "instance-list Extension Statenent”) are simlar to the
existing "leaf" and "leaf-list" statenents, with the exception that
the content is conposed of subordinate el enents according to the

i nstanti ated conpl ex type.

It is also possible to add additional data nodes by using the

corresponding leaf, leaf-list, list, and choice-statenents, etc., as
substatenents of the instance declaration. This is an in-place

Li nowski, et al. Experi ment al [Page 17]

RFC 6095

YANG Language Abstractions

March 2011

augrment ation of the used conplex type confined to a conplex type

instantiation (see also Section 2.13,

details on augnenting conplex types).

2.4. instance-|list Extension Statenent

"Usi ng Conpl ex Types", for

The "instance-list" extension statenent is used to instantiate a
conpl ex type by defining a sequence of subtrees in the nmanagenent

informati on node tree. |In addition, the "instance-list"

takes one argunent that is the identifier of the conplex type

i nst ances. It

is followed by a block of substatenents.

st at enent

The type of the instance is specified with the mandatory "ct:

i nstance-type" substatenent. |n addition, it can be defined how
often an instance may appear in the schema tree by using the "nin-
"max-el emrent s" substatements. Common YANG st at enents

el enments" and

may be used as substatenents of the "instance-list" statenent.

In anal ogy to the "instance" statenent,
Illistll

list"

Li nowski ,

YANG substatenents |ike

, "choice", "leaf", etc., MAY be used to augnent the "instance-
el ements at the root level with additional data nodes.

et al.

description

config
ct:instance-type

if-feature

max- el enent s

m n-el enent s

nmust

or der ed- by

reference

| |
| |
| |
| |
| |
| |
| |
| |
| |
| st at us |
| |
| |
| |
| |
| |
| |
| |
| |
| |

(BN

when
anyxni
choi ce
cont ai ner
ct:instance
ct:instance-1i st
| eaf
|l eaf-1ist
list

Tabl e 3: instance-list’s Substatenents

Experi ment al

[Page 18]

RFC 6095 YANG Language Abstractions March 2011

In case the instance |list represents configuration data, the used
compl ex type of an instance MJST have an instance key.

Instances as well as instance lists may appear as argunents of the
"devi ate" statenent.

2.5. extends Extension Statenment

A conmpl ex type MAY extend exactly one existing base conplex type by
usi ng the "extends" extension statement. The keyword "extends" NAY
occur as a substatenent of the "conpl ex-type" extension statenent.
The argunent of the "conpl ex-type" extension statenent refers to the
base conplex type via its nane. In case a conplex type represents
configuration data (the default), it MJST have a key; otherw se, it
MAY have a key. A key is either defined with the "key" statenent as
part of the conplex type or is inherited fromthe base conplex type

RS S +
| substatenent | cardinality
. N +
| description | 0..1 |
| reference | 0..1 |
| st at us | 0..1
RS S +

Tabl e 4: extends’ Substatenents
2.6. abstract Extension Statenent

Conpl ex types may be declared to be abstract by using the "abstract"”
extension statenment. An abstract conplex type cannot be
instantiated, nmeaning it cannot appear as the nobst specific type of
an instance in the NETCONF payl oad. |In case an abstract type extends
a base type, the base conplex type MIST be al so abstract. By
default, conplex types are not abstract.

The abstract conplex type serves only as a base type for derived
concrete conplex types and cannot be used as a type for an instance
in the NETCONF payl oad.

The "abstract" extension statenment takes a single string argunent,

which is either "true" or "false". |In case a "conplex-type"
statement does not contain an "abstract" statenent as a substatenent,
the default is "false". The "abstract" statenent does not support

any subst at enents.

Li nowski, et al. Experi ment al [Page 19]

RFC 6095 YANG Language Abstractions March 2011

2.7. XM Encoding Rul es

An "instance" node is encoded as an XM. el enment, where an "instance-
list" node is encoded as a series of XM. el enents. The correspondi ng
XML el ement nanes are the "instance" and "instance-list" identifiers,
respectively, and they use the sane XML nanespace as the nodul e.

I nstance child nodes are encoded as subel ements of the instance XM.
el ement. Subel ements representing child nodes defined in the sane
conpl ex type may appear in any order. However, child nodes of an

ext endi ng conpl ex type follow the child nodes of the extended conpl ex
type. As such, the XM. encoding of lists is simlar to the encoding
of containers and lists in YANG

I nstance key nodes are encoded as subel enents of the instance XM
el ement. Instance key nodes nust appear in the sanme order as they
are defined within the "key" statenent of the correspondi ng conpl ex
type definition and precede all other nodes defined in the sane
complex type. That is, if key nodes are defined in an extending
conpl ex type, XM. el enents representing key data precede all other
XM. el enents representing child nodes. On the other hand, XM

el ements representing key data follow the XM. el ements representing
dat a nodes of the base type.

The type of the actual conplex type instance is encoded in a type

el enment, which is put in front of all instance child el ements,
i ncludi ng key nodes, as described in Section 2.8 ("Type Encodi ng
Rul es").

The proposed XM. encoding rules conformto the YANG XM. encodi ng
rules in [RFC6020]. Conpared to YANG enabling key definitions in
derived hierarchies is a new feature introduced with the conpl ex
types extension. As a new | anguage feature, conplex types al so

i ntroduce a new payl oad entry for the instance type identifier.

Based on our inplenentation experience, the proposed XM. encodi ng
rul es support consistent mappi ng of YANG nodels with conplex types to
an XM. schema using XML conpl ex types.

2.8. Type Encodi ng Rul es

In order to encode the type of an instance in the NETCONF payl oad,
XM. el enents nanmed "type" belonging to the XML nanespace
"urn:ietf:parans: xm :ns:yang:ietf-conplex-type-instance" are added to
the serialized formof instance and instance-list nodes in the

payl oad. The suggested nanespace prefix is "cti". The "cti:type"
XML el ements are inserted before the serialized formof all nenbers
that have been declared in the correspondi ng conplex type definition

Li nowski, et al. Experi ment al [Page 20]

RFC 6095 YANG Language Abstractions March 2011

The "cti:type" element is inserted for each type in the extension
chain to the actual type of the instance (nost specific last). Each
type nanme includes its correspondi ng nanespace.

The type of a conplex type instance MIST be encoded in the reply to
NETCONF <get > and <get-config> operations, and in the payload of a
NETCONF <edit-config> operation if the operation is "create" or

"replace". The type of the instance MJUST al so be specified in case
<copy-config> is used to export a configuration to a resource
addressed with an URI. The type of the instance has to be specified

in user-defined renote procedure calls (RPCs).

The type of the instance MAY be specified in case the operation is
"merge" (either because this is explicitly specified or no operation
attribute is provided).

In case the node already exists in the target configuration and the
type attribute (type of a conplex type instance) is specified but
differs fromthe data in the target, an <rpc-error> elenent is
returned with an <error-app-tag> val ue of "wong-conplex-type". In
case no such elenment is present in the target configuration but the
type attribute is mssing in the configuration data, an <rpc-error>
element is returned with an <error-tag> value of "m ssing-attribute”

The type MJST NOT be specified in case the operation is "del ete"
2.9. Extension and Feature Definition Mdule

The nmodul e bel ow contains all YANG extension definitions for conplex
types and typed instance identifiers. |In addition, a "conpl ex-type"
feature is defined, which may be used to provide conditional or

al ternative nodeling, depending on the support status of conplex
types in a NETCONF server. A NETCONF server that supports the
nodel i ng features for conplex types and the XML encodi ng for conpl ex
types as defined in this docunent MJUST advertise this as a feature.
This is done by including the feature nane "conpl ex-types" in the
feature paraneter list as part of the NETCONF <hel |l o> nessage as
described in Section 5.6.4 in [RFC6020].

<CODE BEGA NS> file "ietf-conpl ex-types@011-03-15. yang"
nodul e ietf-conpl ex-types {

nanespace "urn:ietf:paranms: xm :ns:yang:ietf-conplex-types"
prefix "ct";

organi zati on

Li nowski, et al. Experi ment al [Page 21]

RFC 6095 YANG Language Abstractions March 2011

"NETMOD WG';

cont act
"Editor: Bernd Linowski
<ber nd. | i nowski . ext @sn. cont
Editor: Mehnet Ersue
<nehnet . er sue@sn. conp
Editor: Siarhei Kuryla
<s. kuryl a@nuail . conp"

description
"YANG ext ensions for conplex types and typed instance
identifiers.

Copyright (c) 2011 I ETF Trust and the persons identified as
aut hors of the code. Al rights reserved.

Redi stribution and use in source and binary forns, with or

wi thout nodification, is pernitted pursuant to, and subject
to the license terns contained in, the Sinplified BSD License
set forth in Section 4.c of the |ETF Trust's Legal Provisions
Rel ating to | ETF Docunents
(http://trustee.ietf.org/license-info).

This version of this YANG nodule is part of RFC 6095; see
the RFC itself for full |egal notices."

revision 2011-03-15 {
description "lInitial revision."
}

ext ensi on conpl ex-type {
description "Defines a conpl ex-type."
reference "Section 2.2, conpl ex-type Extension Statenent”;
argunent type-identifier {
yi n-el enent true
}

ext ensi on extends {
description "Defines the base type of a conplex-type."
reference "Section 2.5, extends Extension Statenment"”;
argunent base-type-identifier {
yi n-el ement true
}

Li nowski, et al. Experi ment al [Page 22]

RFC 6095 YANG Language Abstractions March 2011

ext ensi on abstract {
description "Makes the conpl ex-type abstract."
reference "Section 2.6, abstract Extension Statenment";
argunent st at us;

ext ensi on instance {
description "Declares an instance of the given
conmpl ex type.";
reference "Section 2.3, instance Extension Statenent";
argunent ct-instance-identifier {
yi n-el enent true
}

}

ext ensi on instance-list {
description "Declares a list of instances of the given
conpl ex type";
reference "Section 2.4, instance-list Extension Statement";
argument ct-instance-identifier {
yi n-el ement true
}

}

ext ensi on instance-type {
description "Tells to which type instance the instance
identifier refers.™;
reference "Section 3.2, instance-type Extension Statenent”;
argunent target-type-identifier {
yi n-el enent true
}

feature conpl ex-types {
description "Indicates that the server supports
conpl ex types and instance identifiers."

<CODE ENDS>

Li nowski, et al. Experi ment al [Page 23]

RFC 6095 YANG Language Abstractions March 2011

2.10. Exanmple Model for Conplex Types

The exanpl e nodel bel ow shows how conpl ex types can be used to
represent physical equipnment in a vendor-independent, abstract way.

It reuses the conplex types defined in the physical resource nodel in
Section 1.5.1.

<CODE BEG NS>

nmodul e hw {

nanespace "http://exanple.conl hw';
prefix "hw';

i mport ietf-conplex-types {prefix "
i nport udntore {prefix "uc"; }

ct"; }

/1 Hol der types

ct:conmplex-type Slot {
ct: extends uc: Equi pnent Hol der;
| eaf slotNunber { type uintl6; config false; }
1.,

}

ct:conpl ex-type Chassis {
ct: extends uc: Equi pnent Hol der;
| eaf nunber Of ChassisSlots { type uint32; config false; }
/1

}
/1 Equi pnment types
ct:compl ex-type Card {
ct: extends uc: Equi pnent;

| eaf position { type uint32; mandatory true; }
| eaf slotsRequired {type unit32; }

}

/1 Root El enent
ct:instance hardware { type uc: ManagedHardware; }

} /'/ hw nodul e

<CODE ENDS>

Li nowski, et al. Experi ment al [Page 24]

RFC 6095 YANG Language Abstractions March 2011

2.11. NETCONF Payl oad Exanpl e

Fol | owi ng exanpl e shows the payload of a reply to a NETCONF <get >
command. The actual type of managed hardware instances is indicated
with the "cti:type" elenents as required by the type encoding rules.
The contai nnent hierarchy in the NETCONF XM. payl oad reflects the
contai nnent hierarchy of hardware instances. This nakes filtering
based on the contai nnent hierarchy possible w thout having to dea
with values of leafs of type leafref that represent the tree
structure in a flattened hierarchy.

<har dwar e>
<cti:type>uc: Basi cQbject</cti:type>
<di sti ngui shedNanme>/ R- T31/ CH 2</ di st i ngui shedName>
<gl obal 1 d>6278279001</ gl obal | d>
<cti:type>uc: Resource</cti:type>
<cti:type>uc: Physi cal Resource</cti:type>
<ot herldentifier>Rack R322-1</otherldentifier>
<seri al Number >R- US- 3276279a</ seri al Nunber >
<cti:type>uc: Hardware</cti:type>
<cti:type>uc: ManagedHar dware</cti:type>
<cti:type>hw Equi prent Hol der</cti:type>
<equi pnent Hol der >
<cti:type>uc: Basi cQbject</cti:type>
<di sti ngui shedNanme>/ R- T31/ CH 2/ SL- 1</ di st i ngui shedNanme>
<gl obal 1 d>548872003</ gl obal | d>
<cti:type>uc: Resource</cti:type>
<cti:type>uc: Physi cal Resource</cti:type>
<ot herldentifier>CU Sl ot</otherldentifier>
<seri al Number >T- K4733890x45</ seri al Nunber >
<cti:type>uc: Hardware</cti:type>
<cti:type>uc: ManagedHar dwar e</cti :type>
<cti:type>uc: Equi pnent Hol der</cti:type>
<equi pnent >
<cti:type>uc: Basi cObject</cti:type>
<di st i ngui shedNanme>/ R- T31/ CH 2/ SL- 1/ C- 3</ di st i ngui shedNane>
<gl obal 1 d>89772001</ gl obal | d>
<cti:type>uc: Resource</cti:type>
<cti:type>uc: Physi cal Resource</cti:type>
<ot herldentifier>ATM 45252</ ot herl dentifier>
<seri al Nunber >A- 778911- b</ seri al Nunber >
<cti:type>uc: Hardware</cti:type>
<cti:type>uc: ManagedHar dwar e</cti : type>
<cti:type>uc: Equi pnent</cti:type>
<instal |l ed>true</install ed>
<ver si on>A2</ ver si on>
<r edundancy>1</r edundancy>
<cti:type>hw Card</cti:type>

Li nowski, et al. Experi ment al [Page 25]

RFC 6095 YANG Language Abstractions March 2011

2.

2.

2.

<usedSl ot s>1</ usedSl ot s>

</ equi pnent >

<cti:type>hw Slot</cti:type>

<sl| ot Nunmber >1</ sl ot Nunber >
</ equi pnent Hol der >
<cti:type>hw Chassis</cti:type>
<nunber & Chassi sSl| ot s>6</ nunber O Chassi sS| ot s>
/1

</ har dwar e>

12. Update Rules for Mdul es Using Conplex Types

In addition to the nodul e update rules specified in Section 10 in
[RFC6020], nodul es that define conplex types, instances of conplex
types, and typed instance identifiers nmust obey follow ng rules:

0 New conpl ex types MAY be added

0 A new conplex type MAY extend an existing conplex type.

0 New data definition statements MAY be added to a conplex type only
if:
* they are not nmandatory or
* they are not conditionally dependent on a new feature (i.e.

they do not have an "if-feature" statement that refers to a new
feature).

o0 The type referred to by the instance-type statenent may be changed
to a type that derives fromthe original type only if the origina
type does not represent configuration data.

13. Using Conpl ex Types

Al'l data nodes defined inside a conplex type reside in the conpl ex
type nanespace, which is their parent node nanespace

13.1. Overriding Conplex Type Data Nodes

It is not allowed to override a data node inherited froma base type
That is, it is an error if a type "base" with a | eaf naned "foo" is
ext ended by anot her conplex type ("derived") with a | eaf named "foo"
in the same nodule. 1In case they are derived in different nodul es,
there are two distinct "foo" nodes that are mapped to the XM
nanespaces of the nodule, where the conplex types are specified

Li nowski, et al. Experi ment al [Page 26]

RFC 6095 YANG Language Abstractions March 2011

A conpl ex type that extends a basic conplex type may use the "refine"
statenment in order to inprove an inherited data node. The target
node identifier must be qualified by the nodule prefix to indicate
clearly which inherited node is refined.

The follow ng refinenents can be done:

o A leaf or choice node nmay have a default value, or a new default
value if it already had one.

o0 Any node may have a different "descripti