Network Working Group M. Blaze

Request for Comments: 2704 J. Feigenbaum
Category: Informational J. loannidis
AT&T Labs - Research
A. Keromytis

U. of Pennsylvania
September 1999
The KeyNote Trust-Management System Version 2
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

This memo describes version 2 of the KeyNote trust-management system.

It specifies the syntax and semantics of KeyNote ‘assertions’,
describes ‘action attribute’ processing, and outlines the application
architecture into which a KeyNote implementation can be fit. The
KeyNote architecture and language are useful as building blocks for
the trust management aspects of a variety of Internet protocols and
services.

1. Introduction

Trust management, introduced in the PolicyMaker system [BFL96], is a
unified approach to specifying and interpreting security policies,
credentials, and relationships; it allows direct authorization of
security-critical actions. A trust-management system provides
standard, general-purpose mechanisms for specifying application
security policies and credentials. Trust-management credentials
describe a specific delegation of trust and subsume the role of

public key certificates; unlike traditional certificates, which bind

keys to names, credentials can bind keys directly to the

authorization to perform specific tasks.

Blaze, et al. Informational [Page 1]

RFC 2704 The KeyNote Trust-Management System September 1999

A trust-management system has five basic components:

* A language for describing ‘actions’, which are operations with
security consequences that are to be controlled by the system.

* A mechanism for identifying ‘principals’, which are entities that
can be authorized to perform actions.

* A language for specifying application ‘policies’, which govern the
actions that principals are authorized to perform.

* A language for specifying ‘credentials’, which allow principals to
delegate authorization to other principals.

* A ‘compliance checker’, which provides a service to applications
for determining how an action requested by principals should be
handled, given a policy and a set of credentials.

The trust-management approach has a number of advantages over other
mechanisms for specifying and controlling authorization, especially

when security policy is distributed over a network or is otherwise
decentralized.

Trust management unifies the notions of security policy, credentials,
access control, and authorization. An application that uses a
trust-management system can simply ask the compliance checker whether
a requested action should be allowed. Furthermore, policies and
credentials are written in standard languages that are shared by all
trust-managed applications; the security configuration mechanism for

one application carries exactly the same syntactic and semantic

structure as that of another, even when the semantics of the

applications themselves are quite different.

Trust-management policies are easy to distribute across networks,
helping to avoid the need for application-specific distributed policy
configuration mechanisms, access control lists, and certificate
parsers and interpreters.

For a general discussion of the use of trust management in
distributed system security, see [Bla99].

KeyNote is a simple and flexible trust-management system designed to
work well for a variety of large- and small-scale Internet-based
applications. It provides a single, unified language for both local
policies and credentials. KeyNote policies and credentials, called
‘assertions’, contain predicates that describe the trusted actions
permitted by the holders of specific public keys. KeyNote assertions
are essentially small, highly-structured programs. A signed

Blaze, et al. Informational [Page 2]

RFC 2704 The KeyNote Trust-Management System September 1999

assertion, which can be sent over an untrusted network, is also
called a ‘credential assertion’. Credential assertions, which also
serve the role of certificates, have the same syntax as policy
assertions but are also signed by the principal delegating the trust.

In KeyNote:
* Actions are specified as a collection of name-value pairs.

* Principal names can be any convenient string and can directly
represent cryptographic public keys.

* The same language is used for both policies and credentials.

* The policy and credential language is concise, highly expressive,
human readable and writable, and compatible with a variety of
storage and transmission media, including electronic mail.

* The compliance checker returns an application-configured ‘policy
compliance value’ that describes how a request should be handled
by the application. Policy compliance values are always
positively derived from policy and credentials, facilitating
analysis of KeyNote-based systems.

* Compliance checking is efficient enough for high-performance and
real-time applications.

This document describes the KeyNote policy and credential assertion
language, the structure of KeyNote action descriptions, and the
KeyNote model of computation.

We assume that applications communicate with a locally trusted
KeyNote compliance checker via a ‘function call’ style interface,
sending a collection of KeyNote policy and credential assertions plus
an action description as input and accepting the resulting policy
compliance value as output. However, the requirements of different
applications, hosts, and environments may give rise to a variety of
different interfaces to KeyNote compliance checkers; this document
does not aim to specify a complete compliance checker API.

2. KeyNote Concepts

In KeyNote, the authority to perform trusted actions is associated
with one or more ‘principals’. A principal may be a physical entity,
a process in an operating system, a public key, or any other
convenient abstraction. KeyNote principals are identified by a
string called a ‘Principal Identifier’. In some cases, a Principal
Identifier will contain a cryptographic key interpreted by the

Blaze, et al. Informational [Page 3]

RFC 2704 The KeyNote Trust-Management System September 1999

KeyNote system (e.g., for credential signature verification). In
other cases, Principal Identifiers may have a structure that is
opaque to KeyNote.

Principals perform two functions of concern to KeyNote: They request
‘actions’ and they issue ‘assertions’. Actions are any trusted
operations that an application places under KeyNote control.
Assertions delegate the authorization to perform actions to other
principals.

Actions are described to the KeyNote compliance checker in terms of a
collection of name-value pairs called an ‘action attribute set’. The
action attribute set is created by the invoking application. Its

structure and format are described in detail in Section 3 of this
document.

KeyNote provides advice to applications about the interpretation of
policy with regard to specific requested actions. Applications

invoke the KeyNote compliance checker by issuing a ‘query’ containing
a proposed action attribute set and identifying the principal(s)
requesting it. The KeyNote system determines and returns an
appropriate ‘policy compliance value’ from an ordered set of possible
responses.

The policy compliance value returned from a KeyNote query advises the
application how to process the requested action. In the simplest

case, the compliance value is Boolean (e.g., "reject" or "approve").
Assertions can also be written to select from a range of possible
compliance values, when appropriate for the application (e.g., "no
access", "restricted access", "full access"). Applications can
configure the relative ordering (from ‘weakest’ to ‘strongest’) of

compliance values at query time.

Assertions are the basic programming unit for specifying policy and
delegating authority. Assertions describe the conditions under which
a principal authorizes actions requested by other principals. An
assertion identifies the principal that made it, which other

principals are being authorized, and the conditions under which the
authorization applies. The syntax of assertions is given in Section

4.

A special principal, whose identifier is "POLICY", provides the root

of trust in KeyNote. "POLICY" is therefore considered to be
authorized to perform any action.

Blaze, et al. Informational [Page 4]

RFC 2704 The KeyNote Trust-Management System September 1999

Assertions issued by the "POLICY" principal are called ‘policy
assertions’ and are used to delegate authority to otherwise untrusted
principals. The KeyNote security policy of an application consists

of a collection of policy assertions.

When a principal is identified by a public key, it can digitally sign
assertions and distribute them over untrusted networks for use by
other KeyNote compliance checkers. These signed assertions are also
called ‘credentials’, and serve a role similar to that of traditional

public key certificates. Policies and credentials share the same

syntax and are evaluated according to the same semantics. A
principal can therefore convert its policy assertions into

credentials simply by digitally signing them.

KeyNote is designed to encourage the creation of human-readable
policies and credentials that are amenable to transmission and
storage over a variety of media. Its assertion syntax is inspired by
the format of RFC822-style message headers [Cro82]. A KeyNote
assertion contains a sequence of sections, called ‘fields’, each of
which specifies one aspect of the assertion’s semantics. Fields
start with an identifier at the beginning of a line and continue

until the next field is encountered. For example:

KeyNote-Version: 2

Comment: A simple, if contrived, email certificate for user mab

Local-Constants: ATT_CA key = "RSA:acdfaldf1011bbac"

mab_key = "DSA:deadbeefcafe001a"

Authorizer: ATT_CA_key

Licensees: mab_key

Conditions: ((app_domain == "email") # valid for email only
&& (address == "mab@research.att.com"));

Signature: "RSA-SHA1:f00f2244"

The meanings of the various sections are described in Sections 4 and
5 of this document.

KeyNote semantics resolve the relationship between an application’s
policy and actions requested by other principals, as supported by
credentials. The KeyNote compliance checker processes the assertions
against the action attribute set to determine the policy compliance

value of a requested action. These semantics are defined in Section

5.

An important principle in KeyNote’s design is ‘assertion
monotonicity’; the policy compliance value of an action is always
positively derived from assertions made by trusted principals.
Removing an assertion never results in increasing the compliance
value returned by KeyNote for a given query. The monotonicity

Blaze, et al. Informational [Page 5]

RFC 2704 The KeyNote Trust-Management System September 1999

property can simplify the design and analysis of complex network-
based security protocols; network failures that prevent the
transmission of credentials can never result in spurious

authorization of dangerous actions. A detailed discussion of
monotonicity and safety in trust management can be found in [BFL96]
and [BFS98].

3. Action Attributes

Trusted actions to be evaluated by KeyNote are described by a
collection of name-value pairs called the ‘action attribute set’.

Action attributes are the mechanism by which applications communicate
requests to KeyNote and are the primary objects on which KeyNote
assertions operate. An action attribute set is passed to the KeyNote
compliance checker with each query.

Each action attribute consists of a name and a value. The semantics
of the names and values are not interpreted by KeyNote itself; they
vary from application to application and must be agreed upon by the
writers of applications and the writers of the policies and

credentials that will be used by them.

Action attribute names and values are represented by arbitrary-length
strings. KeyNote guarantees support of attribute names and values up
to 2048 characters long. The handling of longer attribute names or
values is not specified and is KeyNote-implementation-dependent.
Applications and assertions should therefore avoid depending on the
the use of attributes with names or values longer than 2048
characters. The length of an attribute value is represented by an
implementation-specific mechanism (e.g., NUL-terminated strings, an
explicit length field, etc.).

Attribute values are inherently untyped and are represented as
character strings by default. Attribute values may contain any non-
NUL ASCII character. Numeric attribute values should first be
converted to an ASCII text representation by the invoking
application, e.g., the value 1234.5 would be represented by the
string "1234.5".

Attribute names are of the form:
<AttributelD>:: {Any string starting with a-z, A-Z, or the
underscore character, followed by any humber of
a-z, A-Z, 0-9, or underscore characters} ;
That is, an <AttributelD> begins with an alphabetic or underscore

character and can be followed by any number of alphanumerics and
underscores. Attribute names are case-sensitive.

Blaze, et al. Informational [Page 6]

RFC 2704 The KeyNote Trust-Management System September 1999

The exact mechanism for passing the action attribute set to the
compliance checker is determined by the KeyNote implementation.
Depending on specific requirements, an implementation may provide a
mechanism for including the entire attribute set as an explicit
parameter of the query, or it may provide some form of callback
mechanism invoked as each attribute is dereferenced, e.g., for access
to kernel variables.

If an action attribute is not defined its value is considered to be
the empty string.

Attribute names beginning with the " " character are reserved for use
by the KeyNote runtime environment and cannot be passed from
applications as part of queries. The following special attribute

names are used:

Name Purpose

_MIN_TRUST Lowest-order (minimum) compliance
value in query; see Section 5.1.

_MAX_TRUST Highest-order (maximum) compliance
value in query; see Section 5.1.

_VALUES Linearly ordered set of compliance
values in query; see Section 5.1.
Comma separated.

_ACTION_AUTHORIZERS Names of principals directly
authorizing action in query.
Comma separated.

In addition, attributes with names of the form "_<N>", where <N> is
an ASClIl-encoded integer, are used by the regular expression matching
mechanism described in Section 5.

The assignment and semantics of any other attribute names beginning
with "_" is unspecified and implementation-dependent.

The names of other attributes in the action attribute set are not
specified by KeyNote but must be agreed upon by the writers of any
policies and credentials that are to inter-operate in a specific
KeyNote query evaluation.

Blaze, et al. Informational [Page 7]

RFC 2704 The KeyNote Trust-Management System September 1999

By convention, the name of the application domain over which action
attributes should be interpreted is given in the attribute named
"app_domain". The IANA (or some other suitable authority) will
provide a registry of reserved app_domain names. The registry will
list the names and meanings of each application’s attributes.

The app_domain convention helps to ensure that credentials are
interpreted as they were intended. An attribute with any given name
may be used in many different application domains but might have
different meanings in each of them. However, the use of a global
registry is not always required for small-scale, closed applications;
the only requirement is that the policies and credentials made
available to the KeyNote compliance checker interpret attributes
according to the same semantics assumed by the application that
created them.

For example, an email application might reserve the app_domain
"RFC822-EMAIL" and might use the attributes named "address" (the
email address of a message’s sender), "name" (the human name of the
message sender), and any "organization" headers present (the
organization name). The values of these attributes would be derived

in the obvious way from the email message headers. The public key of
the message’s signer would be given in the "_ACTION_AUTHORIZERS"
attribute.

Note that "RFC822-EMAIL" is a hypothetical example; such a name may
or may not appear in the actual registry with these or different

attributes. (Indeed, we recognize that the reality of email security

is considerably more complex than this example might suggest.)

4. KeyNote Assertion Syntax

In the following sections, the notation [X]* means zero or more
repetitions of character string X. The notation [X]+ means one or

more repetitions of X. The notation <X>* means zero or more
repetitions of non-terminal <X>. The notation <X>+ means one or more
repetitions of X, whereas <X>? means zero or one repetitions of X.
Nonterminal grammar symbols are enclosed in angle brackets. Quoted
strings in grammar productions represent terminals.

4.1 Basic Structure
<Assertion>:: <VersionField>? <AuthField> <LicenseesField>?
<LocalConstantsField>? <ConditionsField>?
<CommentField>? <SignatureField>? ;

All KeyNote assertions are encoded in ASCII.

Blaze, et al. Informational [Page 8]

RFC 2704 The KeyNote Trust-Management System September 1999

KeyNote assertions are divided into sections, called ‘fields’, that
serve various semantic functions. Each field starts with an
identifying label at the beginning of a line, followed by the ":"
character and the field’s contents. There can be at most one field
per line.

A field may be continued over more than one line by indenting

subsequent lines with at least one ASCIlI SPACE or TAB character.
Whitespace (a SPACE, TAB, or NEWLINE character) separates tokens but
is otherwise ignored outside of quoted strings. Comments with a

leading octothorp character (see Section 4.2) may begin in any

column.

One mandatory field is required in all assertions:
Authorizer
Six optional fields may also appear:

Comment
Conditions
KeyNote-Version
Licensees
Local-Constants
Signature

All field names are case-insensitive. The "KeyNote-Version" field,

if present, appears first. The "Signature” field, if present,

appears last. Otherwise, fields may appear in any order. Each field
may appear at most once in any assertion.

Blank lines are not permitted in assertions. Multiple assertions

stored in a file (e.g., in application policy configurations),

therefore, can be separated from one another unambiguously by the use
of blank lines between them.

4.2 Comments
<Comment>:: "#" {ASCII characters} ;
The octothorp character ("#", ASCII 35 decimal) can be used to
introduce comments. Outside of quoted strings (see Section 4.3), all
characters from the "#" character through the end of the current line

are ignored. However, commented text is included in the computation
of assertion signatures (see Section 4.6.7).

Blaze, et al. Informational [Page 9]

RFC 2704 The KeyNote Trust-Management System September 1999

4.3 Strings

A ‘string’ is a lexical object containing a sequence of characters.
Strings may contain any non-NUL characters, including newlines and
nonprintable characters. Strings may be given as literals, computed
from complex expressions, or dereferenced from attribute names.

4.3.1 String Literals
<StringLiteral>:: "\"" {see description below} "\"";

A string literal directly represents the value of a string. String
literals must be quoted by preceding and following them with the
double-quote character (ASCII 34 decimal).

A printable character may be ‘escaped’ inside a quoted string literal
by preceding it with the backslash character (ASCII 92 decimal)
(e.g., "like \"this\"."). This permits the inclusion of the double-
guote and backslash characters inside string literals.

A similar escape mechanism is also used to represent non-printable
characters. "\n" represents the newline character (ASCII character

10 decimal), "\r" represents the carriage-return character (ASCII
character 13 decimal), "\t" represents the tab character (ASCII
character 9 decimal), and "\f" represents the form-feed character
(ASCII character 12 decimal). A backslash character followed by a
newline suppresses all subsequent whitespace (including the newline)
up to the next non-whitespace character (this allows the continuation
of long string constants across lines). Un-escaped newline and

return characters are illegal inside string literals.

The constructs "\00", "\000", and "\ooo" (where o represents any
octal digit) may be used to represent any non-NUL ASCII characters
with their corresponding octal values (thus, "\012" is the same as
"\n", "\101" is "A", and "\377" is the ASCII character 255 decimal).
However, the NUL character cannot be encoded in this manner; "\0",
"\00", and "\000" are converted to the strings "0", "00", and "000"
respectively. Similarly, all other escaped characters have the
leading backslash removed (e.g., "\a" becomes "a", and "\" becomes
"\"). The following four strings are equivalent:

"this string contains a newline\n followed by one space."

"this string contains a newline\n \
followed by one space.”

Blaze, et al. Informational [Page 10]

RFC 2704 The KeyNote Trust-Management System September 1999

“this str\
ing contains a\
newline\n followed by one space.”

"this string contains a newline\012\040followed by one space.”
4.3.2 String Expressions

In general, anywhere a quoted string literal is allowed, a ‘string
expression’ can be used. A string expression constructs a string
from string constants, dereferenced attributes (described in Section
4.4), and a string concatenation operator. String expressions may be
parenthesized.

<StrEx>:: <StrEx> "." <StrEx> [* String concatenation */
| <StringLiteral> /* Quoted string */

| "(" <StrEx>")"
| <DerefAttribute> /* See Section 4.4 */
| "$" <StrEx> ; /* See Section 4.4 */

The "$" operator has higher precedence than the "." operator.

4.4 Dereferenced Attributes

Action attributes provide the primary mechanism for applications to
pass information to assertions. Attribute names are strings from a
limited character set (<AttributelD> as defined in Section 3), and
attribute values are represented internally as strings. An attribute

is dereferenced simply by using its name. In general, KeyNote allows
the use of an attribute anywhere a string literal is permitted.

Attributes are dereferenced as strings by default. When required,
dereferenced attributes can be converted to integers or floating

point numbers with the type conversion operators "@" and "&". Thus,
an attribute named "foo" having the value "1.2" may be interpreted as
the string "1.2" (foo), the integer value 1 (@foo), or the floating

point value 1.2 (&foo).

Attributes converted to integer and floating point numbers are
represented according to the ANSI C ‘long’ and ‘float’ types,
respectively. In particular, integers range from -2147483648 to
2147483647, whilst floats range from 1.17549435E-38F to
3.40282347E+38F.

Any uninitialized attribute has the empty-string value when

dereferenced as a string and the value zero when dereferenced as an
integer or float.

Blaze, et al. Informational [Page 11]

RFC 2704 The KeyNote Trust-Management System September 1999

Attribute names may be given literally or calculated from string
expressions and may be recursively dereferenced. In the simplest
case, an attribute is dereferenced simply by using its name outside
of quotes; e.g., the string value of the attribute named "foo" is by
reference to ‘foo’ (outside of quotes). The "$<StrEx>" construct
dereferences the attribute named in the string expression <Strex>.
For example, if the attribute named "foo" contains the string "bar",
the attribute named "bar" contains the string "xyz", and the
attribute "xyz" contains the string "qua", the following string
comparisons are all true:

foo == "bar"
$("foo") == "bar"
$foo == "xyz"
$(foo) == "xyz"
$$foo == "qua"

If <StrEx> evaluates to an invalid or uninitialized attribute name,
its value is considered to be the empty string (or zero if used as a
numeric).

The <DerefAttribute> token is defined as:
<DerefAttribute>:: <AttributelD> ;
4.5 Principal Identifiers
Principals are represented as ASCII strings called ‘Principal
Identifiers’. Principal Identifiers may be arbitrary labels whose
structure is not interpreted by the KeyNote system or they may encode

cryptographic keys that are used by KeyNote for credential signature
verification.

<Principalldentifier>:: <OpaquelD>
| <KeyID> ;

4.5.1 Opaque Principal Identifiers
Principal Identifiers that are used by KeyNote only as labels are
said to be ‘opaque’. Opaque identifiers are encoded in assertions as
strings (see Section 4.3):
<OpaquelD>:: <StrEx> ;

Opague identifier strings should not contain the ":" character.

Blaze, et al. Informational [Page 12]

RFC 2704 The KeyNote Trust-Management System September 1999

4.5.2 Cryptographic Principal Identifiers

Principal Identifiers that are used by KeyNote as keys, e.g., to
verify credential signatures, are said to be ‘cryptographic’.
Cryptographic identifiers are also lexically encoded as strings:

<KeylID>:: <StrEx> ;

Unlike Opaque ldentifiers, however, Cryptographic Identifier strings
have a special form. To be interpreted by KeyNote (for signature
verification), an identifier string should be of the form:

<IDString>:: <ALGORITHM>":"<ENCODEDBITS> ;

"ALGORITHM" is an ASCII substring that describes the algorithms to be
used in interpreting the key’s bits. The ALGORITHM identifies the
major cryptographic algorithm (e.g., RSA [RSA78], DSA [DSA94], etc.),
structured format (e.g., PKCS1 [PKCS1]), and key bit encoding (e.g.,
HEX or BASE64). By convention, the ALGORITHM substring starts with
an alphabetic character and can contain letters, digits, underscores,

or dashes (i.e., it should match the regular expression "[a-zA-Z][a-
zZA-Z0-9_-]*"). The IANA (or some other appropriate authority) will
provide a registry of reserved algorithm identifiers.

"ENCODEDBITS" is a substring of characters representing the key’s
bits, the encoding and format of which depends on the ALGORITHM. By
convention, hexadecimal encoded keys use lower-case ASCII characters.

Cryptographic Principal Identifiers are converted to a normalized
canonical form for the purposes of any internal comparisons between
them; see Section 5.2.

Note that the keys used in examples throughout this document are
fictitious and generally much shorter than would be required for
security in practice.

4.6 KeyNote Fields

4.6.1 The KeyNote-Version Field
The KeyNote-Version field identifies the version of the KeyNote
assertion language under which the assertion was written. The
KeyNote-Version field is of the form

<VersionField>:: "KeyNote-Version:" <VersionString> ;

<VersionString>:: <StringLiteral>
| <IntegerLiteral> ;

Blaze, et al. Informational [Page 13]

RFC 2704 The KeyNote Trust-Management System September 1999

where <VersionString> is an ASCIl-encoded string. Assertions in
production versions of KeyNote use decimal digits in the version
representing the version number of the KeyNote language under which
they are to be interpreted. Assertions written to conform with this
document should be identified with the version string "2" (or the

integer 2). The KeyNote-Version field, if included, should appear

first.

4.6.2 The Local-Constants Field

This field adds or overrides action attributes in the current

assertion only. This mechanism allows the use of short names for
(frequently lengthy) cryptographic principal identifiers, especially

to make the Licensees field more readable. The Local-Constants field
is of the form:

<LocalConstantsField>:: "Local-Constants:" <Assignments> ;
<Assignments>:: /* can be empty */
| <AttributelD> "=" <StringLiteral> <Assignments> ;

<AttributelD> is an attribute name from the action attribute
namespace as defined in Section 3. The name is available for use as
an attribute in any subsequent field. If the Local-Constants field
defines more than one identifier, it can occupy more than one line
and be indented. <StringLiteral> is a string literal as described in
Section 4.3. Attributes defined in the Local-Constants field

override any attributes with the same name passed in with the action
attribute set.

An attribute may be initialized at most once in the Local-Constants
field. If an attribute is initialized more than once in an

assertion, the entire assertion is considered invalid and is not
considered by the KeyNote compliance checker in evaluating queries.

4.6.3 The Authorizer Field

The Authorizer identifies the Principal issuing the assertion. This
field is of the form

<AuthField>:: "Authorizer:" <AuthID> ;
<AuthlD>:: <Principalldentifier>
| <DerefAttribute> ;

The Principal Identifier may be given directly or by reference to the
attribute namespace (as defined in Section 4.4).

Blaze, et al. Informational [Page 14]

RFC 2704 The KeyNote Trust-Management System September 1999

4.6.4 The Licensees Field

The Licensees field identifies the principals authorized by the
assertion. More than one principal can be authorized, and
authorization can be distributed across several principals through
the use of ‘and’ and threshold constructs. This field is of the form

<LicenseesField>:: "Licensees:" <LicenseesExpr> ;

<LicenseesExpr>:: [* can be empty */
| <PrincExpr> ;

<PrincExpr>:: "(" <PrincExpr>")"
| <PrincExpr> "&&" <PrincExpr>
| <PrincExpr>"||" <PrincExpr>
| <K>"-of (" <PrincList>")" /* Threshold */
| <Principalldentifier>
| <DerefAttribute> ;

<PrincList>:: <Principalldentifier>
| <DerefAttribute>
| <PrincList>"," <PrincList> ;

<K>:: {Decimal number starting with a digit from 1 to 9} ;

The "&&" operator has higher precedence than the "||" operator. <K>
is an ASCIl-encoded positive decimal integer. If a <PrincList>
contains fewer than <K> principals, the entire assertion is omitted
from processing.

4.6.5 The Conditions Field
This field gives the ‘conditions’ under which the Authorizer trusts
the Licensees to perform an action. ‘Conditions’ are predicates that

operate on the action attribute set. The Conditions field is of the
form:

<ConditionsField>:: "Conditions:" <ConditionsProgram> ;

<ConditionsProgram>:: /* Can be empty */
| <Clause> ";" <ConditionsProgram> ;

<Clause>:: <Test> "->" "{" <ConditionsProgram> "}"
| <Test>"->" <Value>
| <Test>;

<Value>:: <StrEx> ;

Blaze, et al. Informational [Page 15]

RFC 2704 The KeyNote Trust-Management System September 1999

<Test>:: <RelExpr>;

<RelExpr>:: "(" <RelExpr>")" [* Parentheses */
| <RelExpr> "&&" <RelExpr> /* Logical AND */
| <RelExpr>"||" <RelExpr> /* Logical OR */
| """ <RelExpr> /* Logical NOT */
| <IntRelExpr>
| <FloatRelExpr>
| <StringRelExpr>
| "true” [* case insensitive */
| "false”; /* case insensitive */

<IntRelExpr>:: <IntEx> "==" <IntEx>
| <IntEx> "1=" <IntEx>
| <IntEx> "<" <IntEx>
| <IntEx> ">" <IntEx>
| <IntEx> "<=" <IntEx>
| <IntEx> ">=" <IntEx> ;

<FloatRelExpr>:: <FloatEx> "<" <FloatEx>
| <FloatEx> ">" <FloatEx>
| <FloatEx> "<=" <FloatEx>
| <FloatEx> ">=" <FloatEx> ;

<StringRelExpr>:: <StrEx> "==" <StrEx> /* String equality */
| <StrEx> "I=" <StrEx> /* String inequality */
| <StrEx> "<" <StrEx> /* Alphanum. comparisons */
| <StrEx> ">" <StrEx>
| <StrEx> "<=" <StrEx>
| <StrEx> ">=" <StrEx>
| <StrEx> ""=" <RegExpr> ; /* Reg. expr. matching */

<IntEx>:: <IntEx> "+" <IntEx> [* Integer */
| <IntEx> "-" <IntEx>
| <IntEx> "*" <IntEx>
| <IntEx> "/" <IntEx>
| <IntEx> "%" <IntEx>
| <IntEx> "' <IntEx> [* Exponentiation */
["-" <IntEx>
| "(" <IntEx>")"
| <IntegerLiteral>
| "@" <StrEx>;

<FloatEx>:: <FloatEx> "+" <FloatEx> /* Floating point */
| <FloatEx> "-" <FloatEx>
| <FloatEx> "*" <FloatEx>
| <FloatEx> "/" <FloatEx>
| <FloatEx> """ <FloatEx> /* Exponentiation */

Blaze, et al. Informational [Page 16]

RFC 2704 The KeyNote Trust-Management System September 1999

| "-" <FloatEx>

| Il(ll <FIOatEX> ll)ll
| <FloatLiteral>

| "&" <StrEx> ;

<IntegerLiteral>:: {Decimal number of at least one digit} ;

<FloatLiteral>:: <IntegerLiteral>"."<IntegerLiteral> ;

<StringLiteral> is a quoted string as defined in Section 4.3
<AttributelD> is defined in Section 3.

The operation precedence classes are (from highest to lowest):

{G)}
{unary -, @, &, $}
{"}

{*, 1, %}
{+.-}

Operators in the same precedence class are evaluated left-to-right.

Note the inability to test for floating point equality, as most
floating point implementations (hardware or otherwise) do not
guarantee accurate equality testing.

Also note that integer and floating point expressions can only be
used within clauses of condition fields, but in no other KeyNote
field.

The keywords "true" and "false" are not reserved; they can be used as
attribute or principal identifier names (although this practice makes
assertions difficult to understand and is discouraged).

<RegExpr> is a standard regular expression, conforming to the POSIX
1003.2 regular expression syntax and semantics.

Any string expression (or attribute) containing the ASCII
representation of a numeric value can be converted to an integer or
float with the use of the "@" and "&" operators, respectively. Any
fractional component of an attribute value dereferenced as an integer
is rounded down. If an attribute dereferenced as a number cannot be
properly converted (e.g., it contains invalid characters or is empty)

its value is considered to be zero.

Blaze, et al. Informational [Page 17]

RFC 2704 The KeyNote Trust-Management System September 1999

4.6.6 The Comment Field

The Comment field allows assertions to be annotated with information
describing their purpose. It is of the form

<CommentField>:: "Comment:" <text> ;

No interpretation of the contents of this field is performed by
KeyNote. Note that this is one of two mechanisms for including
comments in KeyNote assertions; comments can also be inserted
anywhere in an assertion’s body by preceding them with the "#"
character (except inside string literals).

4.6.7 The Signature Field

The Signature field identifies a signed assertion and gives the
encoded digital signature of the principal identified in the
Authorizer field. The Signature field is of the form:

<SignatureField>:: "Signature:" <Signature> ;
<Signature>:: <StrEx> ;

The <Signature> string should be of the form:
<IDString>:: <ALGORITHM>":"<ENCODEDBITS> ;

The formats of the "ALGORITHM" and "ENCODEDBITS" substrings are as
described for Cryptographic Principal Identifiers in Section 4.4.2

The algorithm name should be the same as that of the principal

appearing in the Authorizer field. The IANA (or some other suitable
authority) will provide a registry of reserved names. It is not

necessary that the encodings of the signature and the authorizer key

be the same.

If the signature field is included, the principal named in the
Authorizer field must be a Cryptographic Principal Identifier, the
algorithm must be known to the KeyNote implementation, and the
signature must be correct for the assertion body and authorizer key.

The signature is computed over the assertion text, beginning with the
first field (including the field identifier string), up to (but not

including) the Signature field identifier. The newline preceding the
signature field identifier is the last character included in

signature calculation. The signature is always the last field in a
KeyNote assertion. Text following this field is not considered part

of the assertion.

Blaze, et al. Informational [Page 18]

RFC 2704 The KeyNote Trust-Management System September 1999

The algorithms for computing and verifying signatures must be
configured into each KeyNote implementation and are defined and
documented separately.

Note that all signatures used in examples in this document are
fictitious and generally much shorter than would be required for
security in practice.

5. Query Evaluation Semantics

The KeyNote compliance checker finds and returns the Policy
Compliance Value of queries, as defined in Section 5.3, below.

5.1 Query Parameters
A KeyNote query has four parameters:
* The identifier of the principal(s) requesting the action.
* The action attribute set describing the action.

* The set of compliance values of interest to the application,
ordered from _MIN_TRUST to _MAX_TRUST

* The policy and credential assertions that should be included in
the evaluation.

The mechanism for passing these parameters to the KeyNote evaluator
is application dependent. In particular, an evaluator might provide

for some parameters to be passed explicitly, while others are looked

up externally (e.g., credentials might be looked up in a network-

based distribution system), while still others might be requested

from the application as needed by the evaluator, through a ‘callback’
mechanism (e.g., for attribute values that represent values from

among a very large namespace).

5.1.1 Action Requester

At least one Principal must be identified in each query as the

‘requester’ of the action. Actions may be requested by several
principals, each considered to have individually requested it. This
allows policies that require multiple authorizations, e.g., ‘two

person control’. The set of authorizing principals is made available

in the special attribute *_ACTION_AUTHORIZERS"; if several principals
are authorizers, their identifiers are separated with commas.

Blaze, et al. Informational [Page 19]

RFC 2704 The KeyNote Trust-Management System September 1999

5.1.2 Ordered Compliance Value Set

The set of compliance values of interest to an application (and their
relative ranking to one another) is determined by the invoking
application and passed to the KeyNote evaluator as a parameter of the
qguery. In many applications, this will be Boolean, e.g., the ordered

sets {FALSE, TRUE} or {REJECT, APPROVE}. Other applications may
require a range of possible values, e.g., {No_Access, Limited_Access,
Full_Access}. Note that applications should include in this set only
compliance value names that are actually returned by the assertions.

The lowest-order and highest-order compliance value strings given in

the query are available in the special attributes named "_MIN_TRUST"
and "_MAX_TRUST", respectively. The complete set of query compliance
values is made available in ascending order (from _MIN_TRUST to
_MAX_TRUST) in the special attribute named "_VALUES". Values are
separated with commas; applications that use assertions that make use
of the _VALUES attribute should therefore avoid the use of compliance
value strings that themselves contain commas.

5.2 Principal Identifier Normalization

Principal identifier comparisons among Cryptographic Principal
Identifiers (that represent keys) in the Authorizer and Licensees
fields or in an action’s direct authorizers are performed after
normalizing them by conversion to a canonical form.

Every cryptographic algorithm used in KeyNote defines a method for
converting keys to their canonical form and that specifies how the
comparison for equality of two keys is performed. If the algorithm
named in the identifier is unknown to KeyNote, the identifier is
treated as opaque.

Opagque identifiers are compared as case-sensitive strings.
Notice that use of opaque identifiers in the Authorizer field
requires that the assertion’s integrity be locally trusted (since it
cannot be cryptographically verified by the compliance checker).
5.