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Chapter 1

Introduction

Versatile Object-oriented Toolkit for Coarse-graining Applications, or VOTCA, is a package which
helps to systematically coarse-grain various systems [3]. This includes deriving the coarse-grained
potentials, assessing their quality, preparing input files required for coarse-grained simulations,
and analyzing the latter.

A typical coarse-graining workflow includes sampling of the system of interest, analysis of the
trajectory using a specific mapping and a coarse-graining method to derive coarse-grained potentials
and, in case of iterative methods, running coarse-grained simulations and iteratively refining the
coarse-grained potentials.

In most cases, coarse-graining requires canonical sampling of a reference (high resolution) sys-
tem. In addition, iterative methods require canonical sampling of the coarse-grained system. The
sampling can be done using either molecular dynamics (MD), stochastic dynamics (SD), or Monte
Carlo (MC) techniques. The latter are implemented in many standard simulation packages. Rather
than implementing its own MD/SD/MC modules, voTca allows swift and flexible integration of
existing programs in such a way that sampling is performed by the program of choice. At the
moment, an interface to GROMACS [4] simulation package is provided. The rest of the analysis
needed for systematic coarse-graining is done using the package tools.

The workflow can be exemplified on coarse-graining of a propane
liquid. A single molecule of propane contains three carbon and eight
hydrogen atoms. A united atom coarse-grained representation of a
propane molecule has three beads and two bead types, A and B, with
three and two hydrogens combined with the corresponding atom, as
shown in fig. 1.1. This representation defines the mapping operator,
as well as the bonded coarse-grained degrees of freedom, such as the
bond b and the bond angle 6. Apart from the bonded interactions,
up and ug, beads belonging to different molecules have non-bonded
interactions, uaa, uap, upg. The task of coarse-graining is then to Figure 1.1:  Three-bead
derive a potential energy surface u which is a function of all coarse-  coarse-grained model  of
grained degrees of freedom. Note that, while the atomistic bond and  propane.
angle potentials are often chosen to be simple harmonic functions,
the coarse-grained potentials cannot be expressed in terms of simple analytic functions. Instead,
tabulated functions are normally used.

The coarse-graining method defines criteria according to which the potential energy surface is
constructed. For example, for the bond b and the angle § Boltzmann Inversion can be used. In this
case a coarse-grained potential will be a potential of mean force. For the non-bonded degrees of
freedom, the package provides Iterative Boltzmann Inversion (IBI) or Inverse Monte Carlo (IMC)
methods. In this case the radial distribution functions of the coarse-grained model will match those
of the atomistic model. Alternatively, Force Matching (FM) (or multiscale coarse-graining) can be
used, in which case the coarse-grained potential will approximate the many-body potential of mean
force. The choice of a particular method is system-specific and requires a thorough consistency
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check. It is important to keep in mind that coarse-graining should be used with understanding
and caution, methods should be crossed-checked with each other as well as with respect to the
reference system.

The package consists of two parts: a C++ kernel and a scripting engine. The kernel is capable
of processing atomistic topologies and trajectories and offers a flexible framework for reading,
manipulating and analyzing topologies and generated by MD/SD/MC sampling trajectories. It
is modular: new file formats can be integrated without changing the existing code. Currently,
an interface for GROMACS [4] topologies and trajectories is provided. The kernel also includes
various coarse-graining tools, for example calculations of probability distributions of bonded and
non-bonded interactions, correlation and autocorrelation functions, and updates for the coarse-
grained pair potential.

The scripting engine is used to steer the iterative procedures. Here the analysis tools of
the package used for sampling (e.g. GROMACS tools) can be integrated into the coarse-graining
workflow, if needed. The coarse-graining workflow itself is controlled by several Extensible Markup
Language (XML) input files, which contain mapping and other options required for the workflow
control. In what follows, these input files are described.

Before using the package, do not forget to initalize the variables in the bash or csh (tcsh)

source <csg-installation>/bin/VOTCARC.bash
source <csg-installation>/bin/VOTCARC.csh

More details as well as several examples can be found in ref. [3]. Please cite this paper if you
are using the package. Tutorials can be found on the VOTCA homepage WWW.VOTCA.ORG.


http://www.votca.org

Chapter 2

Theoretical background

2.1 Mapping

The mapping is an operator that establishes a link between the atomistic and coarse-grained
representations of the system. An atomistic system is described by specifying the values of the
Cartesian coordinates and momenta

n

o= A{ry,.. el (2.1)
pn = {p17"')pn}' 22
of the n atoms in the system.! On a coarse-grained level, the coordinates and momenta are

specified by the positions and momenta of CG sites

RN ={R,,..., Ry}, (2.3)
PN ={P,...,Py}. (2.4)

Note that capitalized symbols are used for the CG sites while lower case letters are used for the
atomistic system.
The mapping operator ¢y is defined by a matrix for each bead I and links the two descriptions

R, = chﬁ“u (2:5)
i=1

- - . - Cri
P = MR;=M; chﬁ' = M; Z Lpz (2.6)
i=1 "

: m
=1

forallI=1,...,N.
If an atomistic system is translated by a constant vector, the corresponding coarse-grained
system is also translated by the same vector. This implies that, for all I,

icu =1. (2.7)
1=1

In some cases it is useful to define the CG mapping in such a way that certain atoms belong
to several CG beads at the same time [6]. Following ref. [5], we define two sets of atoms for each
of the N CG beads. For each site I, a set of involved atoms is defined as

n what follows we adopt notations of ref. [5].
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An atom ¢ in the atomistic model is involved in a CG site, I, if and only if this atom provides a
nonzero contribution to the sum in eq. 2.6.
A set of specific atoms is defined as

St = {ilcr; #0 and ¢, = 0 for all J # I}. (2.9)

In other words, atom i is specific to site I if and only if this atom is involved in site I and is not
involved in the definition of any other site.

The CG model will generate an equilibrium distribution of momenta that is consistent with
an underlying atomistic model if all the atoms are specific and if the mass of the I*" CG site is

given by [5] )
M; = (Z %) . (2.10)

ier;
.

If all atoms are specific and the center of mass of a bead is used for mapping, then cy; = i and

the condition 2.10 is automatically satisfied.

2.2 Boltzmann inversion

Boltzmann inversion is mostly used for bonded potentials, such as bonds, angles, and torsions [7].
Boltzmann inversion is structure-based and only requires positions of atoms.

The idea of Boltzmann inversion stems from the fact that in a canonical ensemble independent
degrees of freedom ¢ obey the Boltzmann distribution, i. e.

P(q) = Z " exp[-BU(q)] , (2.11)

where Z = [exp[—BU(q)]dq is a partition function, 8 = 1/kgT. Once P(q) is known, one can
obtain the coarse-grained potential, which in this case is a potential of mean force, by inverting
the probability distribution P(q) of a variable ¢, which is either a bond length, bond angle, or
torsion angle

U(q) = —ksTInP(q) . (2.12)

The normalization factor Z is not important since it would only enter the coarse-grained potential
U(q) as an irrelevant additive constant.

Note that the histograms for the bonds H,(r), angles Hy(§), and torsion angles H,(¢) have
to be rescaled in order to obtain the volume normalized distribution functions P,.(r), Ps(6), and
P,(y), respectively,

_ Hy(0)

sin @

Pr(r) = P9(9)

471'7’2 ) I PK,D(SD) = H%(QD) I (213)
where r is the bond length 7, 6 is the bond angle, and ¢ is the torsion angle. The bonded
coarse-grained potential can then be written as a sum of distribution functions

U(r,0,p) =U.(r) + Ug(0) + Uy (y) , (2.14)
Ug(q) = —ksTInPy(q), g=r1,0,0 .

On the technical side, the implementation of the Boltzmann inversion method requires smooth-
ing of U(q) to provide a continuous force. Splines can be used for this purpose. Poorly and un-
sampled regions, that is regions with high U(q), shall be extrapolated. Since the contribution of
these regions to the canonical density of states is small, the exact shape of the extrapolation is
less important.

Another crucial issue is the cross-correlation of the coarse-grained degrees of freedom. Indepen-
dence of the coarse-grained degrees of freedom is the main assumption that allows factorization of
the probability distribution and the potential, eq. 2.14. Hence, one has to carefully check whether
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this assumption holds in practice. This can be done by performing coarse-grained simulations and
comparing cross-correlations for all pairs of degrees of freedom in atomistic and coarse-grained
resolution, e. g. using a two-dimensional histogram, analogous to a Ramachandran plot. 2

2.2.1 Separation of bonded and non-bonded degrees of freedom

When coarse-graining polymeric systems, it is convenient to treat bonded and non-bonded interac-
tions separately [7]. In this case, sampling of the atomistic system shall be performed on a special
system where non-bonded interactions are artificially removed, so that the non-bonded interac-
tions in the reference system do not contribute to the bonded interactions of the coarse-grained
model.

This can be done by employing exclusion lists using csg boltzmann with the option ——excl.
This is described in detail in sec. 5.1.

excluded

Figure 2.1: Example of excluded interactions.

2Checking the linear correlation coefficient does not guarantee statistical independence of variables, for example
c(x,2?) = 0 if x has a symmetric probability density P(x) = P(—z). This case is often encountered in systems
used for coarse-graining.
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2.3 Iterative methods

Iterative workflow control is essential for the IBI and IMC methods. The
general idea of iterative workflow is sketched in fig. 2.2. A run starts with
an initial guess during the global initialization phase. This guess is used
for the first sampling step, followed by an update of the potential. The

initial guess

it

update itself often requires additional postprocessing such as smoothing, sampling
interpolation, extrapolation or fitting. Different methods are available to

update the potential, for instance Iterative Boltzmann Inversion (see next calculate po-
section 2.4) or Inverse Monte Carlo (see section 2.5). The whole procedure tential update

is then iterated until a convergence criterion is satisfied.

converged?

2.4 Iterative Boltzmann Inversion

Tterative Boltzmann inversion (IBI) is a natural extension of the Boltzmann
inversion method. Since the goal of the coarse-grained model is to reproduce
the distribution functions of the reference system as accurately as possible,
one can also iteratively refine the coarse-grained potentials using some nu-
merical scheme.

In IBI the potential update AU is given by [8]

Figure 2.2: Block-
scheme of an itera-

U(n-‘rl) — U(n)—l—)\AU(n), (2.15) tive method.
pn) n
AUM = kpTIn—— = el — USD (2.16)

Here A € (0,1] is a numerical factor which helps to stabilize the scheme.

The convergence is reached as soon as the distribution function P
matches the reference distribution function P, or, in other words, the potential of mean force,
Ul(;fv)[F, converges to the reference potential of mean force.

IBI can be used to refine both bonded and non-bonded potentials. It is primarily used for
simple fluids with the aim to reproduce the radial distribution function of the reference system in
order to obtain non-bonded interactions. On the implementation side, IBI has the same issues as
the inverse Boltzmann method, i. e. smoothing and extrapolation of the potential must be used.

2.5 Inverse Monte Carlo

Inverse Monte Carlo (IMC) is an iterative scheme which additionally includes cross correlations
of distributions. A detailed derivation of the IMC method can be found in ref. [9)].
The potential update AU of the IMC method is calculated by solving a set of linear equations

<Sa> - S;ef = AchUv ) (2-17)

where

9 (Sa)
au,

Aa'y - = ﬂ (<S(l> <S'Y> - <S0&S’Y>) )

and S the histogram of a coarse-grained variable of interest. For example, in case of coarse-graining
of the non-bonded interactions which depend only on the distance r;; between particles ¢ and j
and assuming that the interaction potential is short-ranged, i.e. U(r;;) = 0 if r;; > 7cyt, the
average value of S, is related to the radial distribution function g(r,) by

N(N —1) 4mr2 Ar
2 Vv

(Sa) = 9(ra) , (2.18)
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where N is the number of atoms in the system (1 N (N — 1) is then the number of all pairs), Ar is
the grid spacing, rcut/M, V is the total volume of the system. In other words, in this particular
case the physical meaning of S, is the number of particle pairs with interparticle distances r;; = r4

which correspond to the tabulated value of the potential U,.

2.5.1 Regularization of Inverse Monte Carlo

To get a well defined cross correlation matrix, A,, enough sampling is needed. If there is not
enough smapling or the initial potential guess is far from the real solution of the inverse problem,
the algorithm might not converge to a stable solution. To overcome this instability problem one
could reformulate equation 2.18 by addition of a penalty term. In this case the potential update
is computed as follows:[10]

AU, = argmin || Aar AU, — ((Sa) — S5 |2 + M| RAU, |2 (2.19)

Equation 2.19 is known as Tikhonov regularization, where R is the regularization operator, which
here is the identity matrix and A > 0 is the regularization parameter. The optimal choice for A
can only be determined if the exact solution of the inverse problem is known, which in practice
is not the case. To get a good initial guess on the magnitude of the regularization parameter a
singular value decomposition of the matrix A, might help. A good A parameter should dominate
the smallest singular values (squared) but is itself small compared to the larger ones.[11]

2.6 Force Matching

Force matching (FM) is another approach to evaluate corse-grained potentials [12-14]. In contrast
to the structure-based approaches, its aim is not to reproduce various distribution functions, but
instead to match the multibody potential of mean force as close as possible with a given set of
coarse-grained interactions.

The method works as follows. We first assume that the coarse-grained force-field (and hence
the forces) depends on M parameters gi, ..., gps. These parameters can be prefactors of analytical
functions, tabulated values of the interaction potentials, or coefficients of splines used to describe
these potentials.

In order to determine these parameters, the reference forces on coarse-grained beads are cal-
culated by summing up the forces on the atoms

Fpef=%" ‘cl—jffj(r”), (2.20)
jesz "
where the sum is over all atoms of the CG site I (see. sec. 2.1). The dj; coefficients can, in
principle, be chosen arbitrarily, provided that the condition Y .  dy = 1 is satisfied [5]. If
mapping coefficients for the forces are not provided, it is assumed that dr; = cy; (see also sec. 3).
By calculating the reference forces for L snapshots we can write down N x L equations

F#g1,...,gm) =F; I=1,... N, l=1,...,L. (2.21)

Here F}ff is the force on the bead I and F7y; is the coarse-grained representation of this force. The
index [ enumerates snapshots picked for coarse-graining. By running the simulations long enough
one can always ensure that M < N x L. In this case the set of equations 2.21 is overdetermined
and can be solved in a least-squares manner.

F* is, in principle, a non-linear function of its parameters {g;}. Therefore, it is useful to
represent the coarse-grained force-field in such a way that equations (2.21) become linear func-
tions of {g;}. This can be done using splines to describe the functional form of the forces [13].
Implementation details are discussed in ref. [3].

Note that an adequate sampling of the system requires a large number of snapshots L. Hence,
the applicability of the method is often constrained by the amount of memory available. To remedy
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the situation, one can split the trajectory into blocks, find the coarse-grained potential for each
block and then perform averaging over all blocks.

2.7 Relative Entropy

Relative entropy is a method which quantifies the extent of the configurational phase-space overlap
between two molecular ensembles [15]. It can be used as a measure of the discrepancies between
various properties of the CG system’s and the target all-atom (AA) ensemble. It has been shown
by Shell S. [16] that one can minimize the relative entropy metric between the model CG system
and the target AA system to optimize CG potential parameters such that the CG ensemble would
mimic the target AA ensemble.

Relative entropy, Sy, is defined as [16]

Srel = ZPAA(H) In (}%) + (Smap)AA, (2.22)

where the sum is over all the configurations of the reference AA system, r = {r;}(i = 1,2,...), M is
the mapping operation to generate a corresponding CG configuration, Ry, from a AA configuration,
ri, i.e., Rf = M(r;), paa and pcg are the configurational probabilities based on the AA and CG
potentials, respectively, and (Smap)aa is the mapping entropy due to the average degeneracy of
AA configurations mapping to the same CG configuration, given by

Smap(RI) = IHZ5RI7M(,”)7 (223)

where ¢ is the Kronecker delta function. Physically, Sye can be interpreted as the likelihood that
one test configuration of the model CG ensemble is representative of the target AA ensemble, and
when the likelihood is a maximum, S}e is at a minimum. Hence, the numerical minimization of
Srel with respect to the parameters of the CG model can be used to optimize the CG model.

In a canonical ensemble, substituting canonical configurational probabilities into eq. 2.22, the
relative entropy simplifies to

Srel = B{Ucc — Uan)an — B (Ace — Aaa) + (Smap)Aa, (2.24)

where 8 = 1/kpT, kg is the Boltzmann constant, T is the temperature, Ucg and Uaa are the
total potential energies from the CG and AA potentials, respectively, Acg and Aaa are the
configurational part of the Helmholtz free energies from the CG and AA potentials, respectively,
and all the averages are computed in the reference AA ensemble.

Consider a model CG system defined by the CG potentials between various CG sites such
that the CG potentials depend on the parameters A = {A1, Ag, ..\, }. Then A are optimized by
the relative entropy minimization. We use the Newton-Raphson strategy for the relative entropy
minimization described in ref. [17]. In this strategy, the CG potential parameters, A, are refined
iteratively as

AL = AP YH ™ VS, (2.25)
where k is the iteration index, x € (0...1) is the scaling parameter that can be adjusted to ensure

convergence, VSl is the vector of the first derivatives of Sye; with respect to A, which can be
computed from eq. 2.24 as

. oUcc B OUcc
v)\Srel - ﬂ< O\ >AA ﬂ< O\ >CG7 (226)
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and H is the Hessian matrix of S,¢ given by

0?Ucq 0?Ucq
H. = _
Y 7 < OXiOA, >AA 0 < OXiOA; >cc

OUcq OUca
2
+5 < GV} >CG

oU oU
B < CG> < CG> ' (2.27)
i [ea \ N [cq
To compute VS and H from eq. 2.26 and 2.27, we need average CG energy derivatives

in the AA and CG ensembles. For two-body CG pair potentials, ucg, between CG sites, the
ensemble averages of the CG energy derivatives can be computed as

b

(5 ), = ((575))
b
().,

< 3 9ucc(rij) > , (2.28)
— oA
1<J ca
where the sum is performed over all the CG site pairs (4, j), a stands for the 15¢, 224 .. derivatives
and b stands for the different powers, i.e., b = 1,2,.... For the averages in the AA ensemble,
first a single AA system simulation can be performed and RDFs between the CG sites in the AA
ensemble can be saved, then the average CG energy derivatives in AA ensemble can be computed
by processing the CG RDFs in the AA ensemble using the CG potentials at each iteration. For
the averages in the CG ensemble, since the CG ensemble changes with the CG parameters, A, a
short CG simulation is performed at each iteration to generate corresponding CG configurations.
Comparisons between relative entropy and other coarse-graining methods are made in ref. [1§]
and [17]. Chaimovich and Shell [17] have shown that for certain CG models relative entropy
minimization produces the same CG potentials as other methods, e.g., it is equivalent to the IBI
when CG interactions are modeled using finely tabulated pair additive potentials, and to the FM
when a CG model is based on N—body interactions, where IV is the number of degrees of freedom
in the CG model. However, there are some advantages of using relative entropy based coarse-
graining. Relative entropy method allows to use analytical function forms for CG potentials,
which are desired in theoretical treatments, such as parametric study of CG potentials, whereas,
methods, like IBI, use tabulated potentials. Recently Lyubartsev et. al [19] have shows how to
use IMC with an analytical function form, too. BI, IBI, and IMC methods are based on pair
correlations and hence, they are only useful to optimize 2-body CG potentials, whereas, relative
entropy uses more generic metric which offers more flexibility in modeling CG interactions and
not only 2-body, but also 3-body (for example see ref. [20]) and N-body CG potentials can be
optimized. In addition to the CG potential optimization, the relative entropy metric can also be
used to optimize an AA to CG mapping operator.

AA
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Chapter 3

Input files

3.1 Mapping files

Mapping relates atomistic and coarse-grained representations of the system. It is organized as
follows: for each molecule type a mapping file is created. When used as a command option, these
files are combined in a list separated by a semicolon, e. g. ——cg "protein.xml; solvent.xml".

Each mapping file contains a topology of the coarse-

grained molecule and a list of maps. Topology specifies oo ---oooo, cono-- T
coarse-grained beads and bonded interactions between | .
them. Each coarse-grained bead has a name, type, a , ,
list of atoms which belong it, and a link to a map. A | H4—Cl+—=—C2—C3—H9 |
map is a set of weights cr; for an atom i belonging to the | .
bead I. Tt is used to calculate the position of a coarse- 1 :
grained bead from the positions of atoms which belong Al B1 A2

to it. Note that cy; will be automatically re-normalized

if their sum is not equal to 1, i. e. in the case of a center-

of-mass mapping one can simply specify atomic masses. Figure 3.1: Atom labeling and mapping

A complete reference for mapping file definitions can be from an all-atom to a united atom rep-
found in sec. 10.2. resentation of a propane molecule.

As an example, we will describe here a mapping file
of a united atom model of a propane molecule, chemical structure of which is shown in fig. 1.1.
In this coarse-grained model two bead types (A,B) and three beads (Al, B1, A2) are defined, as
shown in fig. 3.1. We will use centers of mass of the beads as coarse-grained coordinates.

Extracts from the propane.xml file of the tutorial are shown below. The name tag indicates
the molecule name in the coarse-grained topology. The ident tag must match the name of the
molecule in the atomistic representation. In the topology section all beads are defined by spec-
ifying bead name (A1, B1, A2), type, and atoms belonging to this bead in the form residue
id:residue name:atom name. For each bead a map has to be specified, which is defined
later in maps section. Note that bead type and map can be different, which might be useful in
a situation when chemically different beads (A1, B1) are assigned to the same bead type. After
defining all beads the bonded interactions of the coarse-grained molecule must be specified in the
cg_bonded section. This is done by using the identifiers of the beads in the coarse-grained model.
Finally, in the mapping section, the mapping coefficients are defined. This includes a weighting of
the atoms in the topology section. In particular, the number of weights given should match the
number of beads.

11
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3.2 Verification of a mapping

Note that the ident tag should match the molecule name in the reference system. A common
mistake is that beads have wrong names. In this case, the csg dump tool can be used in order
to identify the atoms which are read in from a topology file . tpr. This tool displays the atoms in
the format residue id:residue name:atom name. For multicomponent systems, it might
happen that molecules are not identified correctly. The workaround for this case is described
in sec. 3.3.

To compare coarse-grained and atomistic configurations one can use a standard visualization
program, e. g. vmd. When comparing trajectories, one has to be careful, since vmd opens both a
.gro and .trr file. The first frame is then the . gro file and the rest is taken from the . trr file.
The coarse-grained trajectory contains only the frames of the trajectory. Hence, the first frame of
the atomistic run has to be removed using the vmd menu.

3.3 Advanced topology handling

A topology is completely specified by a set of beads, their types, and a list of bonded interactions.
VOTCA is able to read topologies in the GROMACS .tpr format. For example, one can create
a coarse-grained topology based on the mapping file and atomistic GROMACS topology using
csg_gmxtopol.

csg_gmxtopol —-top topol.tpr —--cg propane.xml ——-out out.top

In some cases, however, one might want to use a .pdb, HS5MD or .dump file which does not
contain all information about the atomistic topology. In this case, additional information can be
supplied in the XML mapping file.

A typical example is lack of a clear definition of molecules, which can be a problem for simu-
lations with several molecules with multiple types. During coarse-graining, the molecule type is
identified by a name tag as names must be clearly identified. To do this, it is possible to read
a topology and then modify parts of it. The new XML topology can be used with the ——tpr
option, as any other topology file.

For example, if information about a molecule is not present at all, one can create one from a
.pdb file as follows

<topology base="snapshot.pdb">
<molecules>
<clear/>
<define name="mCP" first="1" nbeads="52" nmols="216"/>
</molecules>
</topology>

where <clear/> clears all information that was present before.

Old versions of GROMACS did not store molecule names. In order to use this feature, a
recent .tpr file containing molecule names should always be provided. For old topologies, rerun
GROMACS grompp to update the old topology file.

If molecule information is already present in the parent topology but molecules are not named
properly (as it is the case with old GROMACS . tpr files), one can rename them using

<topology base="topol.tpr'">
<molecules>
<rename name="PPY3" range="1:125"/>
<rename name="Cl" range="126:250"/>
</molecules>
</topology>
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<cg_molecule>

<name>ppn</name> <!-- molecule name in cg representation —->
<ident>ppn</ident> <!-- molecule name in atomistic topology ——>
<topology> <!-- topology of one molecule —-->
<cg_beads>
<cg_bead> <!-- definition of a coarse-grained bead -->
<name>Al</name>
<type>A</type>
<mapping>A</mapping> <!-—- reference to a map ——>
<!-- atoms belonging to this bead -->
<beads>1l:ppn:Cl l:ppn:H4 l:ppn:H5 1l:ppn:H6</beads>
</cg_bead>
<!-- more bead definitions —-—>

</cg_beads>

<cg_bonded> <!-- bonded interactions ——>
<bond>
<name>bond</name>
<beads>
Al B1
Bl A2
</beads>
</bond>

<angle>
<name>angle</name>
<beads>
Al Bl A2
</beads>
</angle>
</cg_bonded>
</topology>

<maps>
<map> <!-- mapping A ——>
<name>A</name>
<weights> 12 1 1 1 </weights>
</map>
<!-— more mapping definitions -->
</maps>
</cg_molecule> <!-— end of the molecule —->

Figure 3.2: An extract from the mapping file propane . xml of a propane molecule. The complete
file can be found in the propane/single_molecule tutorial.
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Here, the file topol.tpr is loaded first and all molecules are renamed afterwards.

If you do not have a .pdb/.gro file and you want to read trajectory from LAMMPS .dump file
or H5MD then it is also possible to directly define topology in XML file. Here is an example of
such file where the trajectory is read from H5MD file:

<topology>
<!-- particle group name in H5MD file —->
<h5md_particle_group name="atoms" />
<molecules>
<!-— define molecule, number of beads, number of mols —-->
<molecule name="BUT" nmols="4000" nbeads="4">
<!-- composition of molecule, bead definition -->
<bead name="CI1" type="C" mass="15.035" g="0.0" />
<bead name="C2" type="C" mass="14.028" g="0.0" />
<bead name="C3" type="C" mass="14.028" g="0.0" />
<bead name="C4" type="C" mass="15.035" g="0.0" />
</molecule>
</molecules>
<!-- bonded terms -->
<bonded>
<bond>
<name>bondl</name>
<beads>
BUT:C1 BUT:C2
</beads>
</bond>
<bond>
<name>bond2</name>
<beads>
BUT:C2 BUT:C3
</beads>
</bond>
<angle>
<name>anglel</name>
<beads>
BUT:C1 BUT:C2 BUT:C3
BUT:C2 BUT:C3 BUT:C4
</beads>
</angle>
<dihedral>
<name>dihedrall</name>
<beads>
BUT:C1 BUT:C2 BUT:C3 BUT:C4
</beads>
</dihedral>
</bonded>
</topology>

The list of molecules is defined in section molecules where every molecule is replicated
nmols times. Inside molecule the list of bead has to be defined with the name, type, mass and
charge.

The box size can be set by the tag box:

<box xx="6.0" yy="6.0" zz="6.0" />

where xx, yy, zz are the dimensions of the box
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A complete reference for XML topology file can be found in sec. 10.3.

3.4 Trajectories

A trajectory is a set of frames containing coordinates (velocities and forces) for the beads defined
in the topology. VOTCA currently supports .trr, .xtc, .pdb, .gro and HS5MD .h5 trajectory
formats.

Once the mapping file is created, it is easy to convert an atomistic to a coarse-grained trajectory
using csg map

csg_map —--top topol.tpr —--trj traj.trr --cg propane.xml —--out cg.gro

The program csg map also provides the option ——no-map. In this case, no mapping is done
and csg_map works as a trajectory converter. In general, mapping can be enabled and disabled
in most analysis tools, e.g. in csg stat or csg_fmatch.

Note that the topology files can have a different contents as bonded interactions are not pro-
vided in all formats. In this case, mapping files can be used to define and relabel bonds.

Also note that the default setting concerning mapping varies individually between the pro-
grams. Some have a default setting that does mapping (such as csg map, use ——no-map to
disable mapping) and some have mapping disabled by default (e.g. csg stat, use ——cg to enable

mapping).

3.5 Setting files

<Cg>
<non-bonded> <!-- non-bonded interactions —-->
<name>A-A</name> <!-- name of the interaction —->
<typel>A</typel> <!-- types involved in this interaction —->
<type2>A</typel2>
<min>0</min> <!-- dimension + grid spacing of tables——>

<max>1.36</max>
<step>0.01</step>
<inverse>

specific commands
</inverse>

specific section for inverse boltzmann, force matching etc.
</non-bonded>
</cg>

Figure 3.3: Abstract of a settings.xml file. See sec. 7.1.1 for a full version

A setting file is written in the format .xml. It consists of a general section displayed above,
and a specific section depending on the program used for simulations. The setting displayed above
is later extended in the sections on iterative boltzmann inversion (csg inverse), force matching
(csg fmatch) or statistical analysis (csg_stat).

Generally, csg stat is an analysis tool which can be used for computing radial distribution
functions and analysing them. As an example, the command

csg_stat —--top topol.tpr —--trj traj.xtc —--options settings.xml

computes the distributions of all interactions specified in settings.xml and writes all tab-
ulated distributions as files “interaction name” .dist.new.
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3.6 Table formats

In the iterative framework distribution functions, potentials and forces are returned as tables and
saved in a file. Those tables generally have the format

x y [error] flag

where x is input quantity (e.g. radius r, angles 6 or ¢), y is the computed quantity (e.g. a
potential) and [error] is an optional error for y. The token flag can take the values i, o or
u. In the first case, 1 (in range) describes a value that lies within the data range, o (out of
range) symbolises a value out of the data range and u stands for an undefined value.

The token flag will be important when extrapolating the table as described in sec. 4.2.

For historical reasons, csg boltzmann uses a slightly different table format, it has no flag
column and uses the third column as a force column when outputting a potential.



Chapter 4

Preparing coarse-grained runs

Preliminary note

The coarse-grained run requires the molecule topology on the one hand and suitable potentials on
the other. In this chapter, the generation of coarse-grained runs is decribed next, followed by a
post-processing of the potential.

If the potential is of such a form that it allows direct fitting of a functional form, the section on
post-processing can be skipped. Instead, a program of choice should be used to fit a functional form
to the potential. Nevertheless, special attention should be paid to units (angles, bondlengths).
The resulting curve can then be specified in the MD package used for simulation. However, most
potentials don’t allow an easy processing of this kind and tabulated potentials have to be used.

4.1 Generating a topology file for a coarse-grained run

WARNING: This section describes experimental features. The exact names and
options of the program might change in the near future. The section is specific to
GROMACS support though a generalization for other MD packages is planned.

The mapping definition is close to a topology needed for a coarse grained run. To avoid redundant
work, csg gmxtopol can be used to automatically generate a gromacs topology based on an
atomistic reference system and a mapping file.

At the current state, csg gmxtopol can only generate the topology for the first molecule in
the system. If more molecule types are present, a special tpr file has to be prepared. The program
can be executed by

csg_gmxtopol ——-top topol.tpr —--cg map.xml —-—-out cgtop

which will create a file cgtop . top. This file includes the topology for the first molecule including
definitions for atoms, bonds, angles and dihedrals. It can directly be used as a topology in
GROMACS, however the force field definitions (atom types, bond types, etc.) still have to be
added manually.

4.2 Post-processing of the potential

The voTCA package provides a collection of scripts to handle potentials. They can be modified,
refined, integrated or inter- and extrapolated. These scripts are the same ones as those used for
iterative methods in chapter 7. Scripts are called by csg call. A complete list of available scripts
can be found in sec. 10.5.

The post-processing roughly consists of the following steps (see further explanations below):

e (manually) clipping poorly sampled (border) regions

17
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e resampling the potential in order to change the grid to the proper format (csg resample)
e extrapolation of the potential at the borders (csg call table extrapolate)

e exporting the table to xvg (csg call convert_ potential gromacs)

4.2.1 Clipping of poorly sampled regions

Regions with an irregular distribution of samples should be deleted first. This is simply done by
editing the .pot file and by deleting those values.

Alternatively, manually check the range where the potential still looks good and is not to noisy
and set the flags in the potential file of the bad parts by hand to o (for out of range). Those
values will later be extrapolated and overwritten.

4.2.2 Resampling

Use the command

csg_resample ——-in table.pot ——-out table_resample.pot \
—-—grid min:step:max

to resample the potential given in file ~table.pot from min to max with a grid spacing of step
steps. The result is written to the file specified by out. Additionally, csg resample allows the
specification of spline interpolation (spfit), the calculation of derivatives (derivative) and
comments (comment). Check the help (help) for further information.

It is important to note that the values min and max don’t correspond to the minimum and
maximum value in the input file, but to the range of values the potential is desired to cover after
extrapolation. Therefore, values in [min, max| that are not covered in the file are automatically
marked by a flag o (for out of range) for extrapolation in the next step.

The potential don’t have to start at 0, this is done by the export script (to xvg) automatically.

4.2.3 Extrapolation

The following line

csg_call table extrapolate [options] table_resample.pot \
table_extrapolate.pot

calls the extrapolation procedure, which processes the range of values marked by csg resample.
The input file is table_resample.pot created in the last step.

After resampling, all values in the potential file that should be used as a basis for extrapolation
are marked with an i, while all values that need extrapolation are marked by o. The command
above now extrapolates all o values from the i values in the file. Available options include averaging
over a certain number of points (avgpoints), changing the functional form (function, default
is quadratic), extrapolating just the left or right region of the file (region) and setting the
curvature (curvature).

The output table_extrapolate.pot of the extrapolation step can now be used for the
coarse-grained run. If GROMACS is used as a molecule dynamics package, the potential has to
be converted and exported to a suitable GROMACS format as described in the final step.

4.2.4 Exporting the table

Finally, the table is exported to xvg. The conversion procedure requires a small xml file table . xml
as shown below:
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<cg>
<non-bonded>
<name>XXX</name>
<step>0.01</step>
</non-bonded>
<inverse>
<gromacs>
<pot_max>1le8</pot_max>
<table_end>8.0</table_end>
<table_bins>0.002</table_bins>
</gromacs>
</inverse>
</cg>

where <table_end> is the GROMACS rvdw+table_extension and <pot_max> is just a

number slightly smaller than the upper value of single/ double precision. The value given in

<table_bins> corresponds to the step value of csg_resample -grid min:step:max.
Using the xm1 file above, call

csg_call —-options table.xml —--ia-type non-bonded —--ia-name XXX \
convert_potential gromacs table_extrapolate.pot table.xvg

to convert the extrapolated values in table_extrapolate.pot to table.xvg (The file will
contain the GROMACS C12 parts only which are stored in the sixth und seventh column, this can
be changed by adding the —ia-type C6 option (for the fourth and fiveth column) or -ia-type
CB option (for the second and third column) after csg call. Ensure compatibility with the
GROMACS topology. See the GROMACS manual for further information).

To obtain a bond table, run

csg_call —-ia-type bond —--ia-name XXX —-options table.xml \
convert_potential gromacs table_extrapolate.pot table.xvg

It is also possible to use angle and dihedral as type as well, but make to sure to have a bonded
section similar to the non-bonded section above with the corresponding interaction name
Internally convert_potential gromacs will do the following steps

e Resampling of the potential from 0 (or -180 for dihedrals) to table_end (or 180 for angles
and dihedrals) with step size table_bins. This is needed for gromacs the table must start
with 0 or -180.

e Extrapolate the left side (to 0 or -180) exponentially

e Extrapolate the right side (to table_end or 180) exponentially (or constant for non-bonded
interactions)

e Shift it so that the potential is zero at table_end for non-bonded interactions or zero at
the minimum for bonded interaction

e Calculate the force (assume periodicity for dihedral potentials)

e Write to the format needed by gromacs

4.2.5 An example on non-bonded interactions

csg_call pot shift_nonbonded table.pot table.pot.refined
csg_resample ——grid 0.3:0.05:2 ——in table.pot.refined \

—--out table.pot.refined
csg_call table extrapolate —-function quadratic —--region left \
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table.pot.refined table.pot.refined
csg_call table extrapolate —-function constant —--region right \
table.pot.refined table.pot.refined

4.3 Alternatives

Additionally to the two methods described above, namely (a) providing the MD package directly
with a functional form fitted with a program of choice or (b) using csg_resample, csg_call
table extrapolate and csg_call convert_potential, another method would be suit-
able. This is integrating the force table as follows

—-Integrate the table

Scsg_call table integrate force.d minus_pot.d
-multiply by -1

Scsg_call table linearop minus_pot.d pot.d -1 0



Chapter 5

Boltzmann Inversion

Boltzmann inversion provides a potential of mean force for a given degree of freedom.
It is mostly used for deriving bonded interactions
from canonical sampling of a single molecule in =
o repare atom-
vacuum, e. g. for polymer coarse-graining, where istic topology
it is difficult to separate bonded and non-bonded
degrees of freedom [7]. The non-bonded potentials Define map-
can then be obtained by using iterative methods Sl e
or force matching. - : !
The main tool which can be used to cal- p\i/sgf:cw:r’;
culate histograms, cross-correlate coarse-grained
variables, create exclusion lists, as well as pre- [ )
pare tabulated potentials for coarse-grained sim- | Create exclusion list
ulations is csg boltzmann. It parses the whole ]
trajectory and stores all information on bonded Generate refer-
. . . . . . ence trajectory
interactions in memory, which is useful for inter-
active analysis. For big systems, however, one can - ! N
. csg-boltzmann to get
run out of memory. In this case csg_stat can | distributions/potentials
be used which, however, has a limited number of —
tasks it can perform (see sec. 3.5 for an example
on its usage).
Another useful tool is csg map. It can
be used to convert an atomistic trajectory to a
coarse-grained one, as it is discussed in sec. 3.4.
To use csg_boltzmann one has to first define a mapping scheme. This is outlined in sec. 3.1.
Once the mapping scheme is specified, it is possible to generate an exclusion list for the proper
sampling of the atomistic resolution system.

J
R—

csg-dump to list atoms

L
—

Y | csg-map to map
Visualize reference + mapped in e.g.
VMD

csg-boltzmann —excl

L
- -/ -

Figure 5.1: Flowchart demonstrating useful
options of the tool.

5.1 Generating exclusion lists

Exclusion lists are useful when sampling from a special reference system is needed, for example
for polymer coarse-graining with a separation of bonded and non-bonded degrees of freedom.

To generate an exclusion list, an atomistic topology without exclusions and a mapping scheme
have to be prepared first. Once the .tpr topology and .xml mapping files are ready, simply run

csg_boltzmann —--top topol.tpr —--cg mapping.xml --excl exclusions.txt

This will create a list of exclusions for all interactions that are not within a bonded interaction
of the coarse-grained sub-bead. As an example, consider coarse-graining of a linear chain of three
beads which are only connected by bonds. In this case, csg boltzmann will create exclusions
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for all non-bonded interactions of atoms in the first bead with atoms of the 3rd bead as these
would contribute only to the non-bonded interaction potential. Note that csg boltzmann will
only create the exclusion list for the fist molecule in the topology.

To add the exclusions to the GROMACS topology of the molecule, either include the file
specified by the —excl option into the .top file as follows

[ exclusions ]
#include "exclusions.txt"

or copy and paste the content of that file to the exclusions section of the gromacs topology file.

5.2 Statistical analysis

For statistical analysis csg boltzmann provides an interactive mode. To enter the interactive
mode, use the —trj option followed by the file name of the reference trajectory

csg_boltzmann —--top topol.tpr —--trj traj.trr --cg mapping.xml
To get help on a specific command of the interactive mode, type

help <command>
for example

help hist
help hist set periodic

Additionally, use the
list

command for a list of available interactions. Note again that csg boltzmann loads the whole
trajectory and all information on bonded interactions into the memory. Hence, its main application
should be single molecules. See the introduction of this chapter for the csg stat command.

If a specific interaction shall be used, it can be referred to by

molecule:interaction—group:index

Here, molecule is the molecule number in the whole topology, interaction-group is the
name specified in the <bond> section of the mapping file, and index is the entry in the list of
interactions. For example, 1:AA-bond:10 refers to the 10th bond named AA-bond in molecule
1. To specify a couple of interactions during analysis, either give the interactions separated by a
space or use wildcards (e.g. *:AA-bondx).

To exit the interactive mode, use the command g.

If analysis commands are to be read from a file, use the pipe or stdin redirects from the shell.

cat commands | csg_boltzmann topol.top —--trj traj.trr —--cg mapping.xml

5.2.1 Distribution functions and tabulated potentials

Distribution functions (tabulated potentials) can be created with the hist (tab) command. For
instance, to write out the distribution function for all interactions of group AA-bond (where
AA-bond is the name specified in the mapping scheme) to the file AA.txt, type

hist AA.txt x:AA-bond:x
The command

hist set



5.2. STATISTICAL ANALYSIS 23

prints a list of all parameters that can be changed for the histogram: the number n of bins for
the table, bounds min and max for table values, scaling and normalizing, a flag periodic to
ensure periodic values in the table and an auto flag. If auto is set to 1, bounds are calculated
automatically, otherwise they can be specified by min and max. Larger values in the table might
extend those bounds, specified by parameter extend.

To directly write the Boltzmann-inverted potential, the tab command can be used. Its usage
and options are very similar to the hist command. If tabulated potentials are written, special
care should be taken to the parameters T (temperature) and the scale. The scale enables
volume normalization as given in eq. 2.13. Possible values are no (no scaling), bond (normalize
bonds) and angle (normalize angles). To write out the tabulated potential for an angle potential
at a temperature of 300K, for instance, type:

tab set T 300
tab set scale angle
tab angle.pot x:angle:x

The table is then written into the file angle.pot in the format described in sec. 3.6. An optional
correlation analysis is described in the next section. After the file has been created by command
tab, the potential is prepared for the coarse-grained run in chapter 4.

5.2.2 Correlation analysis

The factorization of P in eq. 2.14 assumed uncorrelated quantities. csg boltzmann offers two
ways to evaluate correlations of interactions. One option is to use the linear correlation coefficient
(command cor).

However, this is not a good measure since cor calculates the linear correlation only which
might often lead to misleading results [3]. An example for such a case are the two correlated
random variables X ~ U[—1,1] with uniform distribution, and ¥ := X?2. A simple calculation
shows cov(X,Y) = 0 and therefore

X, Y
cor = cov(X, V) =

var(X)var(Y)

A better way is to create 2D histograms. This can be done by specifying all values (e.g. bond
length, angle, dihedral value) using the command wvals, e.g.:

vals vals.txt 1:AA-bond:1 1l:AAA-angle:A

This will create a file which contains 3 columns, the first being the time, and the second and
third being bond and angle, respectively. Columns 2 and 3 can either be used to generate the 2D
histogram, or a simpler plot of column 3 over 2, whose density of points reflect the probability.

Two examples for 2D histograms are shown below: one for the propane molecule and one for
hexane.
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Figure 5.2: propane his-
togram Figure 5.3: hexane histograms: before and after the coarse-
grained run
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The two plots show the correlations between angle and bondlength for both molecules. In
the case of propane, the two quantities are not correlated as shown by the centered distribution,
while correlations exist in the case of hexane. Moreover, it is visible from the hexane plot that the
partition of the correlations has changed slightly during coarse-graining.

The tabulated potentials created in this section can be further modified and prepared for the
coarse-grained run: This includes fitting of a smooth functional form, extrapolation and clipping
of poorly sampled regions. Further processing of the potential is decribed in chapter 4.



Chapter 6

Force matching

The force matching algorithm with cubic spline basis is implemented in the csg fmatch utility.
A list of available options can be found in the reference section of csg fmatch (command -h).

6.1 Program input

csg fmatch needs an atomistic reference run to perform coarse-graining. Therefore, the trajec-
tory file must contain forces (note that there is a suitable option in the GROMACS .mdp file),
otherwise csg fmatch will not be able to run.

In addition, a mapping scheme has to be created, which defines the coarse-grained model (see
sec. 3). At last, a control file has to be created, which contains all the information for coarse-
graining the interactions and parameters for the force-matching run. This file is specified by the
tag —options in the XML format. An example might look like the following

<cg>
<!-—fmatch section —-->
<fmatch>
<!--Number of frames for block averaging —->
<frames_per_block>6</frames_per_block>
<!--Constrained least squares?-——>
<constrainedLS>false</constrainedLS>
</fmatch>
<!-- example for a non-bonded interaction entry —-->
<non-bonded>
<!-— name of the interaction —-->
<name>CG-CG</name>
<typel>A</typel>
<type2>A</type2>
<!-- fmatch specific stuff -->
<fmatch>
<min>0.27</min>
<max>1.2</max>
<step>0.02</step>
<out_step>0.005</out_step>
</fmatch>
</non-bonded>
</cg>

Similarly to the case of spline fitting (see sec. 10.1 on csg resample), the parameters min and
max have to be chosen in such a way as to avoid empty bins within the grid. Determining min and
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Figure 6.1: Flowchart to perform force matching.

max by using csg stat is recommended (see sec. 3.5). A full description of all available options
can be found in sec. 10.4.

6.2 Program output

csg_fmatch produces a separate . force file for each interaction, specified in the CG-options file
(option options). These files have 4 columns containing distance, corresponding force, a table
flag and the force error, which is estimated via a block-averaging procedure. If you are working
with an angle, then the first column will contain the corresponding angle in radians.

To get table-files for GROMACS, integrate the forces in order to get potentials and do extrap-
olation and potentially smoothing afterwards.

Output files are not only produced at the end of the program execution, but also after every
successful processing of each block. The user is free to have a look at the output files and decide
to stop csg _fmatch, provided the force error is small enough.

6.3 Integration and extrapolation of .force files

To convert forces (. force) to potentials (. pot), tables have to be integrated. To use the built-in
integration command from the scripting framework, execute

Scsg_call table integrate CG-CG.force minus_CG-CG.pot
Scsg_call table linearop minus_CG-CG.d CG-CG.d -1 O

This command calls the table integrate.pl script, which integrates the force and writes the
potential to the .pot file.

In general, each potential contains regions which are not sampled. In this case or in the case
of further post-processing, the potential can be refined by employing resampling or extrapolating
methods. See sec. 4.2 for further details.



Chapter 7

Iterative methods

The following sections deal with the methods of Iterative Boltzmann Inversion (IBI), Inverse Monte
Carlo (IMC), and Relative Entropy (RE).

In general, IBI, IMC, and RE are implemented within the same framework. Therefore, most
settings and parameters of those methods are similar and thus described in a general section (see
sec. 7.3). Further information on iterative methods follows in the next chapters, in particular on
the IBI, IMC, and RE methods.

Either from atomistic simulation or
experiment

Generate target
distributions

either by hand pr csg_gmxtopol
Cenerate all files to run simulation

gralnesiopeiony except for missing potentials

5
Specify all interactions that should be

Generate options file iteratively refined

S T

Start iterations csg-inverse <options.xml>

-

)

Check output

S
Generate coarse- }

Monitor first couple of iterations.
Many parameters can be tuned on
the fly

Figure 7.1: Flowchart to perform iterative Boltzmann inversion.

7.1 TIterative workflow control

Iterative workflow control is essential for the IBI, IMC, and RE methods.

The general idea of iterative workflow is sketched in fig. 7.2. During the global initialization the
initial guess for the coarse-grained potential is calculated from the reference function or converted
from a given potential guess into the internal format. The actual iterative step starts with an
iteration initialization. It searches for possible checkpoints and copies and converts files from the
previous step and the base directory. Then, the simulation run is prepared by converting potentials
into the format required by the external sampling program and the actual sampling is performed.

After sampling the phasespace, the potential update is calculated. Often, the update requires
postprocessing, such as smoothing, interpolation, extrapolation or fitting to an analytical form.

Finally, the new potential is determined and postprocessed. If the iterative process continues,
the next iterative step will start to initialize.
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Global initialization ]scripts, executables and user-defined
scripts)

Convert target distribution functions
lteration initialization || into internal format, prepare input
files, copy data of the previous step
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Sampling molecular dynamics, stochastic dy-
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Figure 7.2: Block-scheme of the workflow control for the iterative methods. The most time-
consuming parts are marked in red.

How to start:

The first thing to do is generate reference distribution functions. These might come from exper-
iments or from atomistic simulations. To get reasonable results out of the iterative process, the
reference distributions should be of good quality (little noise, etc).

VOTCA can create initial guesses for the coarse-grained potentials by boltzmann inverting the
distribution function. If a custom initial guess for an interaction shall be used instead, the table
can be provided in <interaction>.pot.in. As already mentioned, VOTCA automatically creates
potential tables to run a simulation. However, it does not know how to run a coarse-grained
simulation. Therefore, all files needed to run a coarse-grained simulation, except for the potentials
that are iteratively refined, must be provided and added to the filelist in the settings XML-file. If
an atomistic topology and a mapping definition are present, VOTCA offers tools to assist the setup
of a coarse-grained topology (see chapter 4).

To get an overview of how input files look like, it is suggested to take a look at one of the
tutorials provided on Www.VOTCA.ORG.

In what follows we describe how to set up the iterative coarse-graining, run the main script,
continue the run, and add customized scripts.

7.1.1 Preparing the run

To start the first iteration, one has to prepare the input for the sampling program. This means
that all files for running a coarse-grained simulation must be present and described in a separate
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XML file, in our case settings.xml (see sec. 3.5 for details). An extract from this file is given
below. The only exception are tabulated potentials, which will be created and updated by the
script in the course of the iterative process.

The input files include: target distributions, initial guess (optional) and a list of interactions
to be iteratively refined. As a target distribution, any table file can be given (e.g. GROMACS
output from g_rdf). The program automatically takes care to resample the table to the correct
grid spacing according to the options provided in settings.xml.

The initial guess is normally taken as a potential of mean force and is generated by Boltzmann-
inversion of the corresponding distribution function. It is written in step_000/<name>.pot .new.
If you want to manually specify the initial guess for a specific interaction, write the potential table
to a file called <name>.pot.in in the folder where you plan to run the iterative procedure.

A list of interactions to be iteratively refined has to be given in the options file. As an
example, the setting.xml file for a propane is shown in listing 7.3. For more details, see the
full description of all options in ref. 10.4.

7.1.2 Starting the iterative process

After all input files have been set up, the run can be started by
csg_inverse —-options settings.xml

Each iteration is stored in a separate directory, named step_<iteration>. step_000 is a
special folder which contains the initial setup. For each new iteration, the files required to run the
CG simulation (as specified in the config file) are copied to the current working directory. The
updated potentials are copied from the last step, step_<n-1>/<interaction>.pot.new, and
used as the new working potentials step_<n>/<interaction>.pot.cur.

After the run preparation, all potentials are converted into the format of the sampling program
and the simulation starts. Once the sampling has finished, analysis programs generate new distri-
butions, which are stored in <interaction>.dist.new, and new potential updates, stored in
<interaction>.dpot.new.

Before adding the update to the old potential, it can be processed in the post_update
step. For each script that is specified in the postupdate, <interaction>.dpot.new is re-
named to <interaction>.dpot.old and stored in <interaction>.dpot.<a-number>
before the processing script is called. Each processing script uses the current potential update
<interaction>.dpot.cur and writes the processed update to <interaction>.dpot .new.
As an example, a pressure correction is implemented as a postupdate script within this framework.

After all postupdate scripts have been called, the update is added to the potential and the new
potential <interaction>.pot.new is written. Additional post-processing of the potential can
be performed in the post_add step which is analogous to the post_update step except for a
potential instead of an update.

To summarize, we list all standard output files for each iterative step:

x.dist.new distribution functions of the current step

*x.dpot .new the final potential update, created by calc_update

x .dpot .<number> for each postupdate script, the .dpot .new is saved and a new one
is created

*x.pot.cur the current potential used for the actual run

*.pot .new the new potential after the add step

*.pot .<number> same as dpot . <number> but for post_add
If a sub-step fails during the iteration, additional information can be found in the log file. The
name of the log file is specified in the steering XML file.

7.1.3 Restarting and continuing

The interrupted or finished iterative process can be restarted either by extending a finished run or
by restarting the interrupted run. When the script csg inverse is called, it automatically checks
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<cg>
<non-bonded> <!-- non-bonded interactions ——>
<name>A-A</name> <!-- name of the interaction —-->
<typel>A</typel> <!-- types involved in this interaction ——>
<type2>A</type2>
<min>0</min> <!-- dimension + grid spacing of tables——>
<max>1.36</max>
<step>0.01</step>
<inverse>
<target>A-A.dist.tgt</target> <!-- target distribution ——>
<do_potential>1 0 0</do_potential> <!-— update cycles ——>
<gromacs>
<table>table_A_A.xvg</table>
</gromacs>
</inverse>
</non-bonded>
<!-— ... more non-bonded interactions —-->
<!-- general options for the inverse script -->
<inverse>
<kBT>1.6629</kBT> <!—-— 300%0.00831451 gromacs units ——>
<program>gromacs</program> <!-- use gromacs to sample —->
<gromacs> <!-- gromacs specific options —-->
<equi_time>10</equi_time> <!-- ignore so many frames —->
<table_bins>0.002</table_bins> <!-— grid for table*.xvg ——>
<pot_max>1000000</pot_max> <!-- cut the potential at value ——>
<table_end>2.0</table_end> <!-—- extend the tables to value ——>
<topol>topol.tpr</topol> <!-— topology + trajectory files ——>
<traj>traj.xtc</traj>
</gromacs>
<!—— these files are copied for each new run -->
<filelist>grompp.mdp topol.top table.xvg
table_al.xvg table_bl.xvg index.ndx
</filelist>
<iterations_max>300</iterations_max> <!-—- number of iterations —-—>
<method>ibi</method> <!-- inverse Boltzmann or inverse MC ——>
<log_file>inverse.log</log_file> <!-— log file ——>
<restart_file>restart_points.log</restart_file> <!-— restart ——>
</inverse>
</cg>

Figure 7.3: settings.xml file specifies interactions to be refined, grid spacings, sampling engine,

and the iterative method. The complete file can be found in the propane/ibm tutorial.
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for a file called done in the current directory. If this file is found, the program assumes that the
run is finished. To extend the run, simply increase inverse.iterations _mazx in the settings file and
remove the file called done. After that, csg inverse can be restarted, which will automatically
recognize existing steps and continue after the last one.

If the iteration was interrupted, the script csg inverse might not be able to restart on its
own. In this case, the easiest solution is to delete the last step and start again. The script will then
repeat the last step and continue. However, this method is not always practical since sampling and
analysis might be time-consuming and the run might have only crashed due to some inadequate
post processing option. To avoid repeating the entire run, the script csg inverse creates a file
with restart points and labels already completed steps such as simulation, analysis, etc. The file
name is specified in the option inverse.restart_file. If specific actions should be redone, one can
simply remove the corresponding lines from this file. Note that a file done is also created in each
folder for those steps which have been successfully finished.

7.2 Iterative Boltzmann Inversion

7.2.1 Input preparation

This section describes the usage of IBI, implemented within the scripting framework described in
the previous section 7.1. It is suggested to get a basic understanding of this framework before
proceeding.

An outline of the workflow for performing IBI is given in fig. 7.1.

To specify Iterative Boltzmann Inversion as algorithm in the script, add ibi in the method
section of the XML setting file as shown below.

<cg>

<inverse>
<method>ibi</method>
</inverse>
</cg>

7.3 Inverse Monte Carlo

In this section, additional options are described to run IMC coarse graining. The usage of IMC
is similar to the one of IBI and understanding the use of the scripting framework described in
chapter 7.1 is necessary.

WARNING: multicomponent IMC is still experimental!

7.3.1 General considerations

In comparison to IBI, IMC needs significantly more statistics to calculate the potential update[3].
It is advisable to perform smoothing on the potential update. Smoothing can be performed as
described in sec. 7.7. In addition, IMC can lead to problems related to finite size: for methanol,
an undersized system proved to lead to a linear shift in the potential|3]. It is therefore always
necessary to check that the system size is sufficiently large and that runlength csg smoothing
iterations are well balanced.

7.3.2 Correlation groups

Unlike IBI, IMC also takes cross-correlations of interactions into account in order to calculate
the update. However, it might not always be beneficial to evaluate cross-correlations of all pairs
of interactions. By specifying inverse.imc.group, VOTCA allows to define groups of interactions,
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amongst which cross-correlations are taken into account, where inverse.imc.group can be any
name.

<non-bonded>
<name>CG-CG</name>
<typel>CG</typel>
<type2>CG</type2>
<imc>

<group>solvent</group>
</imc>
</non-bonded>
<non-bonded>

7.3.3 Regularization

To use the regularized version of IMC a A value > 0 has to be specified by setting inverse.imc.req.
If set to 0 (default value) the unregularized version of IMC is applied.

<non-bonded>
<name>CG-CG</name>
<typel>CG</typel>
<type2>CG</type2>

<inverse>
<imc>
<reg>300</reg>
</imec>
</inverse>
</non-bonded>

7.4 Relative Entropy

In this section, additional options are described to run RE coarse graining. The usage of RE is
similar to the one of IBI and IMC and understanding the use of the scripting framework described
in chapter 7.1 is necessary.

Currently, RE implementation supports optimization of two-body non-bonded pair interac-
tions. Support for bonded and N-body interactions is possible by further extension of RE imple-
mentation.

7.4.1 Potential function and parameters

In RE, CG potentials are modeled using analytical functional forms. Therefore, for each CG
interaction, an analytical functional must be specified in the XML setting file as

<non-bonded>
<name>CG-CG</name>
<typel>CG</typel>
<type2>CG</type2>
<re>
<function>cbspl or 1j126</function>

<cbspl>
<nknots>48</nknots>
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</cbspl>
</re>

</non-bonded>

Currently, standard Lennard-Jones 12-6 (1j126) and uniform cubic B-splines-based piecewise poly-
nomial (cbspl) functional forms are supported. For 1j126, the parameters to optimize are the usual
C12 and Cg. The cbspl form is defined as

1 4 1 0 Ck
11 =3 0 30|/ e

Uehspt(T) = [ 1t 2 tS]g 5 6 30 Ck: , (7.1)
13 =3 1 || crus

where {co, c1, C2, ..., ¢ } are the spline knot values tabulated for m evenly spaced intervals of size
Ar = reyt/(m — 2) along the separation distance r; = i x Ar with the cut-off r.u, and ¢ is given
by
T—Tk

Ar
where index k is determined such that r, <r < ri41. For cbspl, the knot values, {co, ¢1,ca, ..., cm },
are optimized. The number of knot values to use must be specified in the XML setting file as
shown in the above snippet. uchspi(r) exhibits remarkable flexibility, and it can represent various
complex functional characteristics of pair potentials for sufficiently large number of knots.

t=

(7.2)

7.4.2 Update scaling parameter

Depending on the quality of the initial guess and sensitivity of the CG system to the CG parame-
ters, scaling of the parameter update size may be required to ensure the stability and convergence
of the RE minimization. The scaling parameter, x € (0...1), value can be specified in the XML
settings file.

7.4.3 Statistical averaging of parameters

Due to stochastic nature of the CG simulations, near convergence, the CG potential paramters
may fluctuate around the mean converged values. Therefore, the optimal CG parameters can be
estimated by averaging over the last few iterations. To specify averaging, the average, keyword
should be specified in the post_update options in the XML settings file.

7.4.4 (General considerations

To ensure the stability of the relative entropy minimization, some precautionary measures are
taken. For the Newton-Raphson update to converge towards a minimum, the Hessian, H, must be
positive definite at each step. With a good initial guess for the CG parameters and by adjusting
the value of the relaxation parameter, yx, stability of the Newton-Raphson method can be ensured.
One approach to initialize the CG parameters can be to fit them to PMF obtained by inverting
the pair distributions of the CG sites obtained from the reference AA ensemble. For the 1j126 and
cbspl forms, which are linear in its parameters, the second derivative of Sy¢] is never negative, hence
the minimization converges to a single global minimum. However, due to locality property of the
cbspl form, i.e., update to ¢; affects only the value of the potential near r;, and the poor sampling
of the very small separation distances in the high repulsive core, the rows of H corresponding
to the first few spline knots in the repulsive core may become zero causing H to be a singular
matrix. To avoid this singularity issue, we specify a minimum separation distance, ry;i,, for each
CG pair interaction and remove the spline knots corresponding to the r < 7y, region from the
Newton-Raphson update. Once the remaining knot values are updated, the knot values in the
poorly sampled region, i.e., r < ryin, are linearly extrapolated. The value of r,;, at each iteration
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is estimated from the minimum distance at which the CG RDF from the CG-MD simulation is
nonzero. Also, to ensure that the CG pair potentials and forces go smoothly to zero near reyt, 2
knot values before and after r.us, i.e., total 4, are fixed to zero.

7.5 Pressure correction

The pressure of the coarse-grained system usually does not match the pressure of the full atomistic
system. This is because iterative Boltzmann inversion only targets structural properties but not
thermodynamic properties. In order correct the pressure in such a way that it matches the tar-
get pressure (inverse.p target)., different strategies have been used based on small modifications
of the potential. The correction can be enable by adding pressure to the list of inverse.post _update
scripts. The type of pressure correction is selected by setting inverse.post update options.pressure.type.

7.5.1 Simple pressure correction

In ref.[8] a simple linear attractive potential was added to the coarse-grained potential

AV(r) = A (1 S— ) : (7.3)

Tcutof f

with prefactor A
A = —sgn(AP)0.1kpT min(1, |fAP), (7.4)

Ap = P; — Poarget, and scaling factor f and Piarget can be specified in the settings file as
inverse.post_update options.pressure.simple.scale and inverse.p target.
As an example for a block doing simple pressure correction, every third interaction is

<post_update>pressure</post_update>
<post_update_options>
<pressure>
<type>simple</type>
<do>0 0 1</do>
<simple>
<scale>0.0003</scale>
</simple>
</pressure
</post_update_options>

Here, inverse.post _update options.pressure.simple.scale is the scaling factor f. In order to get the
correct pressure it can become necessary to tune the scaling factor f during the iterative process.

7.5.2 Advanced pressure correction

In [21] a pressure correction based on the virial expression of the pressure was introduced. The
potential term remains as in the simple form while a different sturcture of the A factor is used:

) 2 Teut
A= [ P / 7“3gi(7“)d7“} A; = AP, (7.5)
0

3Tcut

This factor requires the particle density p as additional input parameter, which is added as
inverse.particle dens in the input file.
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7.6 Kirkwood-Buff correction

In order to reproduce the exact Kirkwood-Buff ingetrals (KBIs), an correction term can be added
into the coarse-grained potential [22],

(n) __kBT
AU;; (ry=—

(n) ref T
A (Gij - Gi5) (1 - ) ) (7.6)

Tramp

where Gg-ef ) is the KBI calculated from the reference all-atom simulation and GZ(-?) is the KBI

after the n'" iteration.
The Kirkwood-Buff integrals are calculated from the radial distribution functions as follows:

Gij =4m /OOO (9 (r) — 1] 7%dr . (7.7)

For simulations of finite box size we calculate the running integral up to distance R

R
Gij(R) = 47r/0 [9i5(r) — 1] r%dr . (7.8)

The average of those running integrals in the interval, where G,;(R) gets flat, gives a good estimate
for Giji
Gl’j ~< Gij (R) > |§z:f (79)

As an example for a block doing Kirkwood-Buff correction, every iteraction without doing potential
update

<do_potential>0</do_potential>
<post_update>kbibi</post_update>
<post_update_options>
<kbibi>
<do>1</do>
<start>1.0</start>
<stop>1.4</stop>
<factor>0.05</factor>
<r_ramp>1.4</r_ramp>
</kbibi>
</post_update_options>

Here, inverse.post_update_ options.kbibi.factor is the scaling factor A. inverse.post _update_ options.kbibi.start
is 1 and inverse.post_update options.kbibi.stop is ro used to calculate the average of G;;(R).

7.7 Runtime optimization

Most time per iteration is spent on running the coarse-grained system and on calculating the
statistics. To get a feeling on how much statistics is needed, it is recommended to plot the
distribution functions and check whether they are sufficiently smooth. Bad statistics lead to
rough potential updates which might cause the iterative refinement to fail. All runs should be
long enough to produce distributions/rdfs of reasonable quality.

Often, runtime can be improved by smoothing the potential updates. Our experience has
shown that it is better to smooth the potential update instead of the rdf or potential itself. If
the potential or rdf is smoothed, sharp features like the first peak in SPC/E water might get
lost. Smoothing on the delta potential works quite well, since the sharp features are already
present from the initial guess. By applying iterations of a simple triangular smoothing (AU; =
0.25AU;_1 + 0.5AU; + 0.25AU;+1), a reasonable coarse-grained potential for SPC/E water could
be produced in less than 10 minutes. Smoothing is implemented as a post update script and can
be enabled by adding
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<post_update>smooth</post_update>
<post_update_options>
<smooth>
<iterations>2</iterations>
</smooth>
</post_update_options>

to the inverse section of an interaction in the settings XML file.

7.8 Coordination Iterative Boltzmann Inversion

The method C—IBI (Coordination Iterative Boltzmann Inversion) uses pair-wise cumulative coor-
dination as a target function within an iterative Boltzmann inversion. This method reproduces
solvation thermodynamics of binary and ternary mixtures [23].

The estimation of coordination is given by:

Cij(r) = 47r/ gij(r’)radr’ (7.10)
0

with the indices ¢ and j standing for every set of pairs, uses a volume integral of g(r).

The Kirkwood and Buff theory (KB) [24] connects the pair-wise coordinations with particule
fluctuations and, thus, with the solution thermodynamics [25, 26]. This theory make use of the
Kirkwood-Buff integrals (KBI) G;; defined as,

Gij = 47T/ (g3 (r) — 1] 72 dr. (7.11)
0
For big system sizes the G;; can be approximated:
4 3
Gij = Cij(r) — gmr, (7.12)

were the second therm is a volume correction to C;;(r).
Thus the initial guess for the potential of the CG model is obtained from the all atom simula-
tions,

Vo(r) = —kBTln [gij (T)] N (713)
however, the iterative protocol is modified to target C;;(r) given by,
cY(r
VETIBL(p) = VEZIBI(3) 4 kpTIn ﬁit() : (7.14)
Cij ()

To perform the C—IBI is necessary include some lines inside of the .xml file:

<cg>
<non-bonded>
<name>A-A</name>

<inverse>
<post_update>cibi</post_update>
<post_update_options>
<cibi>
<do>1</do>
</cibi>
</post_update_options>

</cg>
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DL POLY interface

WARNING: The DL_POLY interface is still experimental (in development) but it
does support the Iterative Boltzmann Inversion and Inverse Monte Carlo schemes.
The Force Matching might work as well, although it has not been tested thoroughly.

8.1 General remarks on using VOTCA with DL POLY

The DL _POLY interface fully supports coarse-grain mapping of a full-atom system previuosly
simulated with any version of DL POLY, including DL._ POLY-Classic. However, the full opti-
mization of the effective potentials with the aid of iterative methods will only become possible
when the new release of DL POLY-4 (4.06) is made public; the reason being the incapability
of earlier DL POLY versions of using user-specified tabulated force-fields for intramolecular, aka
"bonded", interactions: bonds, angles, dihedral angles (torsions). Below the coarse-graining and
CG force-field optimization with the aid of the latest DL._ POLY-4 version (4.06+) are outlined.

Running vorca with DL POLY-4 as MD simulation engine is very similar to doing so with
GROMACS. The three types of required input files in the case of DL POLY are: CONTROL —
containing the simulation directives and parameters (instead of . mdp file for GROMACS), FIELD
— the topology and force-field specifications (instead of .top and .tpr files), and CONFIG (in-
stead of .gro file) — the initial configuration file, containing the MD cell matrix and particle
coordinates (it can also include initial velocities and/or forces); for details see DL POLY-4 man-
ual. Most of the VOTCA tools and scripts described above in the case of using GROMACS will
work in the same manner, with the following conventional substitutions for the (default) file names
used in options for VOTCA scripts, as necessary:

.dlpf the topology read from FIELD or written to FIELD_CGV
.dlpc = the configuration read from CONFIG or written to CONFIG_CGV
.dlph = the trajectory read from HISTORY or written to HISTORY_CGV

It is also possible to specify file names different from the standard DL POLY convention, in which
case the user has to use the corresponding dot-preceded extension(s); for example: FA-FIELD.dlpf
instead of FIELD or CG-HISTORY .dlph instead of HISTORY CGV (see section 10.1, as well as
the man pages or output of VOTCA commands, with option ——help).

vOTCA follows the DL POLY conventions for file names and formats. Thus, csg_dlptopol
and csg_map produce the CG topology (FIELD _CGYV by default), configuration (CONFIG _CGV),
and/or trajectory (HISTORY _CGYV) files fully compatible with and usable by DL._ POLY. Note
that the ability of these tools to read and write a plethora of different file formats
provides means to convert input and output files between the simulation packages
supported by vorca, e.g. GROMACS—- DL_POLY or vice versa. The user is, how-
ever, strongly advised to check the resulting files for consistency before using them).
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Similarly, the distribution analysis and potential/force generation utilities, such as csg_stat
and VOTCA scripts, will read and write DL POLY-formatted files; in particular, the tabulated
force-field files containing the potential and force/virial data: TABLE — for short-range (VAW)
"non-bonded" interactions, TABBND, TABANG and TABDIH — for "bonded" interations: bonds,
bending angles and dihedrals, correspondingly (for the format details see DL POLY-4 manual).
Note, however, that the latter three files can only be used by DL POLY-4 (4.06+).

The user is advised to search for "dlpoly" through the csg_defaults.xml, csg_table
files and in scripts located in share/votca/scripts/inverse/ in order to find out about the
xml-tags and options specific for DL POLY]; see also sections 10.4 and 10.5.
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Advanced topics

9.1 Customization

Each sub-step of an iteration and all direct calls can be adjusted to the user needs. The internal
part of the iterative framework is organized as follows: all scripts are called using two keywords

csg_call keyl key2

For example, csg_call update imc calls the update script for the inverse Monte Carlo pro-
cedure. The corresponding keywords are listed in sec. 10.5 or can be output directly by calling

csg_call —--list

It is advised not to change already implemented scripts. To customize a script or add a new
one, copy the script to your own directory (set by inverse.scriptpath) and redirect its call by
creating your own csg_table file in this directory which looks like this

keyl key2 scriptl options
key3 key4d script2

If the local keys are already in use, the existing call will be overloaded.

As an example, we will illustrate how to overload the script which calls the sampling package.
The csg inverse script runs mdrun from the GROMACS package only on one cpu. Our task
will be to change the script so that GROMACS uses 8 cpus, which is basically the same as adding
mpirun options in inverse.gromacs.mdrun.command.

First we find out which script calls mdrun:

csg_call —--1list | grep gromacs
The output should look as follows

init gromacs initalize_gromacs.sh

prepare gromacs prepare_gromacs.sh

run gromacs run_gromacs.sh

pressure gromacs calc_pressure_gromacs.sh

rdf gromacs calc_rdf_gromacs.sh

imc_stat gromacs imc_stat_generic.sh
convert_potential gromacs potential_to_gromacs.sh

the third line indicates the script we need. If the output of csg call is not clear, one can try to
find the right script in sec. 10.5. Alternatively, check the folder

<csg-installation>/share/scripts/inverse
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for all available scripts.
Analyzing the output of
csg_call —--cat run gromacs
we can conclude that this is indeed the script we need as the content (in shorted form is):
critical mdrun

Now we can create our own SCRIPTDIR, add a new script there, make it executable and overload
the call of the script:

mkdir -p SCRIPTDIR

cp ‘csg_call —--quiet —--show run gromacs'® SCRIPTDIR/my_run_gromacs.sh
chmod 755 SCRIPTDIR/my_run_gromacs.sh

echo "run gromacs my_run_gromacs.sh" >> SCRIPTDIR/csg_table

Please note that my_run_gromacs.sh is the name of the script and SCRIPTDIR is the cus-
tom script directory, which can be a global or a local path. Now we change the last line of
my_run_gromacs.sh to:

critical mpirun -np 8 mdrun

This completes the customization. Do not forget to add SCRIPTDIR to inverse.scriptpath in the
setting XML file (see sec. 10.4).
You can check the new script by running:

csg_call —--scriptdir SCRIPTDIR --1list
csg_call —-scriptdir SCRIPTDIR —-run run gromacs

Finally, do not forget to remove the license infomation and change the version number of the
script.

9.2 Used external packages
9.2.1 GroMaCS

Get it from www.gromacs.org
e mdrun
e grompp

9.2.2 ESPResSo

Get it from www.espressomd.org

9.2.3 DL POLY
Get it from www.ccpb.ac.uk/DL  POLY

9.2.4 Gnuplot

Get it from www.gnuplot.info

9.2.5 LAMMPS

Get it from lammps.sandia.gov


http://www.gromacs.org
http://www.espressomd.org
http://www.ccp5.ac.uk/DL_POLY/
http://www.gnuplot.info
http://lammps.sandia.gov/

Chapter 10

Reference

10.1 Programs

10.1.1 csg_boltzmann

Performs tasks that are needed for simple boltzmann inversion in an interactive environment.
Allowed options:
-h [ —-help ] display this help and exit
——verbose be loud and noisy
——verbosel be very loud and noisy
-v [ ——-verbose2 ] be extremly loud and noisy
-—top arg atomistic topology file
Mapping options:
—--cg arg coarse graining mapping and bond definitions (xml-file)
-—-map-ignore arg list of molecules to ignore separated by ;
——no-map disable mapping and act on original trajectory
Special options:
—-—excl arg write atomistic exclusion list to file
Trajectory options:
-—trj arg atomistic trajectory file
--begin arg (=0) skip frames before this time (only works for Gromacs files)
——first-frame arg (=0) start with this frame
-—nframes arg process the given number of frames

10.1.2 csg_call

This script calls scripts and functions for the iterative framework. Function can be executed or
shows if keyl="function’.
Usage: csg_call [OPTIONS] keyl key2 [SCRIPT OPTIONS]
Allowed options:
-1, —-1ist Show list of all script
——cat Show the content of the script
——show Show the path to the script
—-—show-share Shows the used VOTCASHARE dir and exits
--scriptdir DIR Set the user script dir (Used if no options xml file is given) Default:
empty
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——options FILE Specify the options xml file to use
--log FILE Specify the log file to use Default: stdout
-—ia-type type Specify the interaction type to use
-—ia-name name Specify the interaction name to use
—-—nocolor Disable colors

-—-sloppy-tables Allow tables without flags
—-—debug Enable debug mode with a lot of information
-h, —--help Show this help

Examples:
csg_call table smooth [ARGUMENTS]
csg_call —--show run gromacs

10.1.3 csg density

Calculates the mass density distribution along a box axis or radial density profile from reference
point
Allowed options:
-h [ —-help ] display this help and exit
——verbose be loud and noisy
—-—verbosel be very loud and noisy
-v [ —-verbose2 ] be extremly loud and noisy
-—top arg atomistic topology file
Mapping options:
--cg arg [OPTIONAL] coarse graining mapping and bond definitions (xml-file). If no file
is given, program acts on original trajectory
-—-map-ignore arg list of molecules to ignore if mapping is done separated by ;
Specific options::
-—type arg (=mass) density type: mass or number
--—axis arg (=r) [x|y|z|r] density axis (r=spherical)
-—step arg (=0.01) spacing of density
——block-length arg write blocks of this length, the averages are cleared after every
write
——out arg Output file
—--rmax arg rmax (default for [r] =min of all box vectors/2, else 1)
)

-—scale arg (=1) scale factor for the density
—--molname arg (=*) molname
——filter arg (=x) filter bead names

-—-ref arg reference zero point
Trajectory options:
-—trj arg atomistic trajectory file
--begin arg (=0) skip frames before this time (only works for Gromacs files)
——first-frame arg (=0) start with this frame
-—nframes arg process the given number of frames

10.1.4 csg_dlptopol

Create a dlpoly topology template based on an existing (atomistic) topology and a mapping xml-
file. The created template file needs to be inspected and amended by the user!
Examples:
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csg_dlptopol —--top .dlpf —--out .dlpf --cg cg-map.xml convert FIELD to

FIELD _CGYV using cg-map.xml

csg_dlptopol —--top FA-dlpoly.dlpf --out CG-dlpoly.dlpf --cg cg-map.xml

csg_dlptopol —--top FA-gromacs.tpr —--out FA-dlpoly.dlpf —--no-map
Allowed options:

-h [ —-help ] display this help and exit

——verbose be loud and noisy

——verbosel be very loud and noisy

-v [ —-verbose2 ] be extremly loud and noisy

-—top arg atomistic topology file

-—out arg output topology in dlpoly format
Mapping options:

—--cg arg coarse graining mapping and bond definitions (xml-file)

-—-map-ignore arg list of molecules to ignore separated by ;

—-—no-map disable mapping and act on original trajectory

10.1.5 csg dump

Print atoms that are read from topology file to help debugging atom naming.
Allowed options:
-h [ —-help ] display this help and exit
——verbose be loud and noisy
——verbosel be very loud and noisy
-v [ ——-verbose2 ] be extremly loud and noisy
-—top arg atomistic topology file
Mapping options:
—--cg arg [OPTIONAL] coarse graining mapping and bond definitions (xml-file). If no file
is given, program acts on original trajectory
——-map-ignore arg list of molecules to ignore if mapping is done separated by ;
Specific options:
——excl display exclusion list instead of molecule list

10.1.6 csg fmatch

Perform force matching (also called multiscale coarse-graining)
Allowed options:
-h [ —-help ] display this help and exit
——verbose be loud and noisy
—-—verbosel be very loud and noisy
-v [ —-verbose2 ] be extremly loud and noisy
-—top arg atomistic topology file
-—options arg options file for coarse graining
-—trj-force arg coarse-grained trajectory containing forces of already known interac-
tions
Mapping options:
--cg arg coarse graining mapping and bond definitions (xml-file)
-—-map-ignore arg list of molecules to ignore separated by ;
——no—map disable mapping and act on original trajectory
Trajectory options:
-—trj arg atomistic trajectory file
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—--begin arg (=0) skip frames before this time (only works for Gromacs files)
—-—first-frame arg (=0) start with this frame
—--nframes arg process the given number of frames

10.1.7 csg gmxtopol

Create skeleton for gromacs topology based on atomistic topology and a mapping file. File still
needs to be modified by the user.
Allowed options:
-h [ —-help ] display this help and exit
——verbose be loud and noisy
—-—verbosel be very loud and noisy
-v [ —-verbose2 ] be extremly loud and noisy
-—top arg atomistic topology file
—-out arg output topology (will create .top and in future also .itp)
Mapping options:
—--cg arg coarse graining mapping and bond definitions (xml-file)
-—-map-ignore arg list of molecules to ignore separated by ;
—-—no-map disable mapping and act on original trajectory

10.1.8 csg imc_solve

Solves the linear system for IMCs

Allowed options:
-h [ —-help ] display this help and exit
-—verbose be loud and noisy
—-—verbosel be very loud and noisy

-v [ —-verbose2 ] be extremly loud and noisy
-r [ —-regularization ] arg (=0) regularization factor
-i [ ——imcfile ] arg imc statefile
-g [ ——gmcfile ] arg gmc statefile
[

—-—-idxfile ] arg idx statefile

10.1.9 csg inverse

Start the script to run ibi, imc, etc. or clean out current dir
Usage: csg_inverse [OPTIONS] —--options settings.xml [clean]
Allowed options:
-h, —-help show this help
-N, —--do-iterations N only do N iterations (ignoring settings.xml)
-—wall-time SEK Set wall clock time
——options FILE Specify the options xml file to use
——debug enable debug mode with a lot of information
——nocolor disable colors
Examples:
csg_inverse —--options cg.xml
csg_inverse -6 —--options cg.xml
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10.1.10 csg map

Convert a reference atomistic trajectory or configuration into a coarse-grained one based on a
mapping xml-file. The mapping can be applied to either an entire trajectory or a selected set of
frames only (see options).
Examples:
csg_map —--top FA-topol.tpr —--trj FA-traj.trr —--out CG-traj.xtc --cg
cg-map.xml
csg_map —--top FA-topol.tpr —--trj FA-conf.gro --out CG-conf.gro --cg
cg-map.xml
csg_map —--top FA-topol.tpr --trj FA-traj.xtc —--out FA-history.dlph —--no-map
csg_map ——top FA-field.dlpf —--trj FA-history.dlph —--out CG-history.dlph
-—cg cg-map.xml
csg_map --top .dlpf --trj .dlph --out .dlph --cg cg-map.xml convert HIS-
TORY to HISTORY CGV
Allowed options:
-h [ —-help ] display this help and exit
-—verbose be loud and noisy
—-—verbosel be very loud and noisy
-v [ ——-verbose2 ] be extremly loud and noisy
-—top arg atomistic topology file
——out arg output file for coarse-grained trajectory
—-vel Write mapped velocities (if available)
——force Write mapped forces (if available)
—-—hybrid Create hybrid trajectory containing both atomistic and coarse-grained
Mapping options:
--cg arg coarse graining mapping and bond definitions (xml-file)
-—-map-ignore arg list of molecules to ignore separated by ;
——no-map disable mapping and act on original trajectory
Trajectory options:
-—trj arg atomistic trajectory file
--begin arg (=0) skip frames before this time (only works for Gromacs files)
——first-frame arg (=0) start with this frame
-—nframes arg process the given number of frames

10.1.11 csg property

Helper program called by inverse scripts to parse xml file.
Allowed options:
——help produce this help message
——path arg path to part of the xml file to print
-—filter arg list option values that match given criteria
—-—print arg (=.) specifies which children or root to print
-—file arg xml file to parse
——short short version of output
——with-path include path of node in output

10.1.12 csg resample
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Change grid and interval of any sort of table files. Mainly called internally by inverse script, can
also be used to manually prepare input files for coarse-grained simulations.
Allowed options:
——help produce this help message
-—in arg table to read
——out arg table to write
——-derivative arg table to write
-—-grid arg new grid spacing (min:step:max). If ’grid’ is specified only, interpolation is
performed.
--type arg (=akima) [cubic|akimallinear|. If option is not specified, the default type
‘akima’ is assumed.
—-—-fitgrid arg specify fit grid (min:step:max). If ’grid’ and “fitgrid’ are specified, a fit is
performed.
——nocut Option for fitgrid: Normally, values out of fitgrid boundaries are cut off. If they
shouldn’t, choose --nocut.
—-—comment arg store a comment in the output table
—--boundaries arg (natural|periodic|derivativezero) sets boundary conditions

10.1.13 csg reupdate

computes relative entropy update.
Allowed options:
-h [ —-help ] display this help and exit
-—verbose be loud and noisy
-—verbosel be very loud and noisy
-v [ ——-verbose2 ] be extremly loud and noisy
—-—top arg atomistic topology file (only needed for RE update)
RE Specific options:
-—options arg options file for coarse graining
-—gentable arg (=0) only generate potential tables from given parameters, NO RE
update!
—-interaction arg [OPTIONAL| generate potential tables only for the specified inter-
actions, only valid when ’gentable’ is true
-—param-in-ext arg (=param.cur) Extension of the input parameter tables
—-—param-out-ext arg (=param.new) Extension of the output parameter tables
—-—pot-out-ext arg (=pot.new) Extension of the output potential tables
—-hessian-check arg (=1) Disable the hessian check (mostly for testing)
Threading options:
--nt arg (=1) number of threads
Trajectory options:
-—trj arg atomistic trajectory file
—--begin arg (=0) skip frames before this time (only works for Gromacs files)
——first-frame arg (=0) start with this frame
-—nframes arg process the given number of frames

10.1.14 csg_stat

Calculate all distributions (bonded and non-bonded) specified in options file. Optionally calculates
update Eigen::Matrix3d for invere Monte Carlo. This program is called inside the inverse scripts.
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Unlike csg boltzmann, big systems can be treated as well as non-bonded interactions can be
evaluated.
Allowed options:
-h [ —-help ] display this help and exit
——verbose be loud and noisy
——verbosel be very loud and noisy
-v [ —-verbose2 ] be extremly loud and noisy
-—top arg atomistic topology file
Mapping options:
--cg arg [OPTIONAL] coarse graining mapping and bond definitions (xml-file). If no file
is given, program acts on original trajectory
-—-map-ignore arg list of molecules to ignore if mapping is done separated by ;
Specific options:
-—options arg options file for coarse graining
-—do-imc write out additional Inverse Monte Carlo data
——block-length arg write blocks of this length, the averages are cleared after every
write
-—ext arg (=dist.new) Extension of the output
Threading options:
--nt arg (=1) number of threads
Trajectory options:
-—trj arg atomistic trajectory file
—--begin arg (=0) skip frames before this time (only works for Gromacs files)
—-—first-frame arg (=0) start with this frame
-—nframes arg process the given number of frames

10.2 Mapping file

The root node always has to be cg__molecule. It can contain the following keywords:
Please mind that dots in xml tags have to replaced by subtags, e.g. x.y has to be
converted to x with subtag y.
cg_molecule
ident Molecule name in reference topology.
maps Section containing definitions of mapping schemes.
map Section for a mapping for 1 bead.
name Name of the mapping
weights Weights of the mapping matrix. Entries are normalized to 1, number
of entries must match the number of reference beads in a coarse-grained bead.
name Name of molecule in coarse-grained representation.
topology Section defining coarse grained beads of molecule.
cg_beads Section defining coarse grained beads of molecule.
cg_bead Definition of a coarse grained bead.
cg_bead.beads The beads section lists all atoms of the reference system that
are mapped to this particular coarse grained bead. The syntax is RESID:RESNAME:ATOMNAME
the beads are separated by spaces.
cg_bead.mapping Mapping scheme to be used for this bead (specified in
section mapping) to map from reference system.
cg_bead.name Name of coarse grained bead.
cg_bead.type Type of coarse grained bead.
cg_bonded The cg_ bonded section contains all bonded interaction of the molecule.
Those can be bond, angle or dihedral. An entry for each group of bonded interaction
can be specified, e.g. several groups (types) of bonds can be specified. A specific
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bonded interaction can be later on addressed by MOLECULE:NAME:NUMBER,
where MOLECULE is the molecule ID in the whole topology, NAME the name of
the interaction group and NUMBER addresses the interaction in the group.
angle Definition of a group of angles.
angle.beads List of triples of beads that define a bond. Names specified in
cg_beads
angle.name Name of the angle
bond Definition of a group of bonds.
bond.beads List of pair of beads that define a bond. Names specified in
cg_beads
bond.name Name of the bond.
dihedral Definition of a group of dihedrals. Since the exact functional form
does not matter, this combines proper as well as improper dihedrals.
dihedral.beads List of quadruples of beads that define a bond. Names speci-
fied in cg_beads
dihedral.name Name of the dihedral

10.3 Topology file

The XML topology file
Please mind that dots in xml tags have to replaced by subtags, e.g. x.y has to be
converted to x with subtag y.
topology The XML topology root element, the base for the topology can be defined by the
"name" attribute
beadtypes Allows defining bead types
mass Define the mass of the bead type; attributes: "name" - the bead type name,
"value" - the new mass
rename Rename the bead type; attributes: "name" - the old name, "newname" -
the new name
bonded This section defines the topology of the molecules, it is used to generate proper
exclusions for calculating rdfs
angle Describes the angle
beads The triplet of the beads in the format MOLECULE NAME:BEAD NAME
name The name of the angle
bond Describes the bond
beads The pair of the beads in the format MOLECULE NAME:BEAD NAME
name The name of the bond
dihedral Describes the dihedrals
beads The quadruplet of the beads in the format MOLECULE NAME:BEAD NAME
name The name of the dihedral
h5md _particle group Attribute name holds the name of particles group in H5MD
file
molecules The the molecules in the trajectory or other operation on the molecules.
clear Clear the information about the molecules
define Define the molecules; attributes: "name" - the name of molecule, "first" -
the id of first molecule, "nbeads" - the number of beads in the molecule, "nmols"
- the number of molecules
molecule Definition of the molecule, with attributes: name, nmols and nbeads.
The name defines residue name, nmols tells how many times this molecule has to
be replicated to match with trajectory file and nbeads defines number of beads in
every molecule.
bead Define the bead in the molecule. Attributes are: name - the name of
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bead, type - the type of bead, mass - the mass of bead, q - the value of charge
and resid - the id of the residue the bead belongs to (>=1).
rename Rename the molecules; attributes: "name" - the new name, "range" - the
range where the new name will be set in the format start range:end range

10.4 Settings file

All options for the iterative script are stored in an xml file.
Please mind that dots in xml tags have to replaced by subtags, e.g. x.y has to be
converted to x with subtag y.
cg Section containing the all coarse-graining options
bonded Interaction specific option for bonded interactions, see the cg.non-bonded sec-
tion for all options
dlpoly
header Header of the interaction in dlpoly TABBND or TABANG file. The
header should be a unique set of the interaction-site names, and these should
match the corresponding names specified in the mapping file.
name Name of the bonded interaction. The name can be arbitrary but should
be unique. For bonded interactions, this should match the name specified in the
mapping file.
periodic set to 1 when calculating bond dihedral potentials with csg fmatch ->
enforces periodicity of potential. (default is 0) (default 0)
fmatch Force matching options
constrainedLLS boolean variable: false - simple least squares, true - constrained
least squares. For details see the VOTCA paper. Practically, both algorithms give
the same results, but simple least squares is faster. If you are a mathematician and
you think that a spline can only then be called a spline if it has continuous first
and second derivatives, use constrained least squares.
dist Accuracy for evaluating the difference in bead positions. Default is le-5 (de-
fault le-5)
frames per block number of frames, being used for block averaging. Atomistic
trajectory, specified with --trj option, is divided into blocks and the force matching
equations are solved separately for each block. Coarse-grained force-field, which
one gets on the output is averaged over those blocks.
inverse general options for inverse script
average
steps number of steps to be used for average computation. For relative en-
tropy method, these many last iteration steps are used to compute average CG
potentials or parameters or both. (default 1)
cleanlist these files are removed after each iteration
convergence check
limit lower convergency limit to stop (default 0)
type type of convergence check to do (default none)
dist min minimal value for the rdf to consider for initial guess of the potential)
(default 1le-10)
dlpoly general dlpoly specific options
angles dlpoly specs for tabulated bonded potentials (applied to all angles)
angles.table grid dlpoly internal grid number for tabulated potentials
bonds dlpoly specs for tabulated bonded potentials (applied to all bonds)
bonds.table end dlpoly internal grid end point for tabulated potentials
bonds.table grid dlpoly internal grid number for tabulated potentials
checkpoint Names of the dlpoly checkpoint files (default REVIVE REVCON)
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command command to run dlpoly (name or absolute path or 'mpirun dlpoly’
or such) (default DLPOLY.Z)
dihedrals dlpoly specs for tabulated bonded potentials (applied to all dihe-
drals)
dihedrals.table grid dlpoly internal grid number for tabulated potentials
table end dlpoly internal grid end point for tabulated non-bonded potentials
(applied to all non-bonded)
table grid dlpoly internal grid number for tabulated non-bonded potentials
(applied to all non-bonded)
topol Name of dlpoly topology file (default .dlpf)
traj Name of the output dlpoly trajectory file (default .dlph)

espresso
command Command to run espresso (name or absolute path or mpirun espresso..)
(default python3)
first frame trash the given number of frames at the beginning of trajectory
(default 0)
opts option to be given to espresso program, use ${script} in there (default
${script})
table bins espresso internal grid for tabulated potentials
traj Name of the output Espresso trajectory file

espressopp
command Command to run espresso (name or absolute path or mpirun espresso..)
(default python2)
first frame trash the given number of frames at the beginning of trajectory
(default 0)
opts option to be given to espresso program, use ${script} in there (default
${script})

filelist these files are copied to each iteration step

gnuplot
bin gnuplot binary to use (default gnuplot)

gromacs gromacs specific options
conf Name of the coordinate file read by grompp (default conf.gro)
conf out Name of the original outcome coordinate written by mdrun (default
confout.gro)
density
density.block length Length of the block for the error analysis
density.with _errors calculate error on the density: yes/no (default no)
equi_time begin analysis after this time when using gromacs (max of this
and first_frame is used) (default 0)
first frame trash the given number of frames at the beginning of trajectory
(max of this and first_frame is used) (default 0)
g _energy
g _energy.bin Name (or absolute path) of the g_ energy binary (default /us-
r/bin/gmx_d energy)
g _energy.opts Additional options to Gromacs g_ energy (e.g. -P 1)
g _energy.pressure options for pressure calculation using g_energy
g _energy.pressure.allow nan is nan an allowed result: yes/no (default no)
g _energy.topol Gromacs binary topol (tpr) file to use by g_energy
gmxrc GMXRC to source at the startup
grompp
grompp.bin Name (or absolute path) of the grompp binary (default /us-
r/bin/gmx_d grompp)
grompp.opts Additional options to Gromacs grompp (e.g. -maxwarn 1)
index Gromacs grompp index file to used by grompp (default index.ndx)
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log Separate log file for gromacs programs (useful with mdrun -v)
mdp Gromacs mdp file to be used by grompp (default grompp.mdp)
mdrun
mdrun.checkpoint Name of the checkpint to use in case of restarted simula-
tion (default state.cpt)
mdrun.command Command to run mdrun (name or absolute path or mpirun
mdrun..) (default /usr/bin/gmx _d mdrun)
mdrun.multidir List of directories for multidir simulations
mdrun.opts Additional options to Gromacs mdrun (e.g. -nosum)
pot__max cut the potential at this value (gromacs bug) (default 1000000)
pre_simulation A pre simulation (e.g. minimization / equilibration ) is a
simulation with a different mdp/topol/index (default no)
pre_simulation.index Gromacs grompp index file to used by grompp in the
pre simulation
pre_simulation.mdp Gromacs mdp file to be used by grompp in the pre
simulation
pre_simulation.topol _in Gromacs text topol (top) file to use by grompp in
the pre simulation
rdf
rdf.block length Length of the block for the error analysis
rdf.map Space separated list of special mapping file(s) for rdf calculations
needed for bonded interactions
rdf.with _errors calculate error on the rdf: yes/no (default no)
ref Options for the case that calculation of reference system is needed
ref.equi_time begin analysis after this time when using gromacs (max of this
and first frame is used) (default 0)
ref.first frame trash the given number of frames at the beginning of trajec-
tory (max of this and first frame is used) (default 0)
ref.mapping Mapping to apply on the coarse-grained topology, use autogen-
erated ones (cg.inverse.optimizer.mapping.output) and given ones (map other
components)
ref.rdf Contains options for Reference rdf calculation
ref.rdf.opts Extra options to give to csg_stat (e.g. --nframes 100)
ref.topol Reference binary topology(global or local path)
ref.traj Reference trajectory(global or local path)
table bins grid for gromacs xvg table (default 0.002)
table end extend the gromacs xvg tables to this value
temp check check kBT against t_ ref in mdp file: yes/no (default yes)
topol Gromacs binary topology (tpr) file to be written by grompp and used
for the simlation (default topol.tpr)
topol _in Gromacs text topology (top) file read by grompp (default topol.top)
traj Gromacs trajectory file to use (default traj.xtc)
trjcat
trjcat.bin Name (or absolute path) of the trjcat binary (default /usr/bin/gmx_d
trjcat)

hoomd-blue
command Command to run hoomd-blue (name or absolute path or mpirun
..) (default hoomd)
opts option to be given to hoomd-blue program, use ${script} in there (default
${script})

imc general imc specific options
default reg default magnitude for regularization parameter if not given for
the group explicitly, default =0 (default 0)

initial configuration what initial configuration to use in every step: maindir/last-
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step/nowhere. (default maindir)
iterations max do the given number of iterations (0=inf)
kBT kBT in KJ/mol (i.e. XXX K *0.00831451)
lammps general lammps specific options
command command to run lammps (name or absolute path or mpirun lammps..)
(default /usr/bin/lmp)
opts option to be given to lammps program, use ${script} in there (default -in
${script})
pressure_file pressure file generated by lammps, use "fix print" in lammps
input (e.g., "fix pressure all print 50 "${mypress}" file lammps.pressure screen
no title "LAMMPS PRESSURE" " ; pressure_file would be lammps.pressure
in this example). The title can be anything as VOTCA skips over this line as
a header when parsing
script lammps script to run
traj trajectory file to be created by lammps, use a format like xyz, which can
be read by csg_stat
log _file name of the log file (default inverse.log)
map Special mapping file(s) for rdf calculations needed for bonded interactions
method method to be performed: ibi/imc/ft/optimizer
optimizer
cma general options for the cma optimizer
cma.eps standard epsilon, in which the best solution is searched
type Type of optimizer to be used
program simulation package to be used (gromacs/espresso/lammps) (default gro-
macs)
re general options for realtive entropy method
csg_reupdate
csg_reupdate.opts options for the csg_reupdate command
restart file Name of the restart file in case a step has to be resumed (default
restart__points.log)
scriptpath list of directories for user scripts (e.g. $PWD) separated by a colon
(like PATH)
sim_prog options, which apply to all simulation programs
command Command to run for the simulation (name or absolute path or
mpirun XXX ..)
conf Name of the coordinate file read by the simulation program (if needed)
conf out Name of the original outcome coordinate written by simulation pro-
gram (if any)
density
density.block length Length of the block for the error analysis
density.with _errors calculate error on the density: yes/no (default no)
equi_ time begin analysis after this time (max of this and first_ frame is used)
(default 0)
first frame trash the given number of frames at the beginning of trajectory
(max of this and first_frame is used) (default 0)
imc
imc.topol Special topology file to be used for csg stat used in imc
imc.traj Special trajectory file to be used for csg stat used in imc
opts option to be given to simulation program, use ${script} in there
rdf
rdf.block length Length of the block for the error analysis
rdf.map Space separated list of special mapping file(s) for rdf calculations
needed for bonded interactions
rdf.topol Special topology file to be used for csg_stat
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rdf.traj Special trajectory file to be used for csg stat
rdf.with _errors calculate error on the rdf: yes/no (default n)
re
re.topol Special topology file to be used for csg reupdate
re.traj Special trajectory file to be used for csg reupdate
script simulation script to run (if any)
topol General topology file to be use if no special one is specified
traj trajectory file to be created by the simulation program

simulation simulation options
background tells csg_inverse that simulation was send to the backgroud (de-
fault no)
tasks number of threads to use for csg_stat (default auto)

nbsearch Grid search algorithm, simple (N square search) or grid (default grid)
non-bonded Interaction specific option for non-bonded interactions

bondtype Internal alias for "non-bonded" or "bonded", set automatically

dlpoly
header Header of the interaction in dlpoly TABLE file. The header should
be a unique pair of the interaction-site names, and these should match the
corresponding names specified in the mapping file.

fmatch Force matching options
max Maximum value of interval for distribution sampled in atomistic MD
simulation. One can get this number by looking at the distribution function for
this interaction. For non-bonded interactions it’s the cut-off of the interaction.
min Minimum value of interval for distribution sampled in atomistic MD sim-
ulation. One can get this number by looking at the distribution function for
this interaction. For non-bonded interactions it’s the distance to the rdf start.
For CG bonds and angles the variable has the similar meaning ( note, that for
angles it is specified in radians ).
out step Grid spacing for the output grid. Normally, one wants to have this
parameter smaller than fmatch.step, to have a smooth curve, without additional
spline interpolation. As a rule of thumb we normally use fmatch.out _step which
is approximately 5 times smaller than fmatch.step.
step grid spacing for the spline, which represents the interaction. This pa-
rameter should not be too big, otherwise you might lose some features of the
interaction potential, and not too small either, otherwise you will have un-
sampled bins which result in an ill-defined equation system and NaNs in the
output.

inverse Contains all information relevant to iterative process
do_ potential Update cycle for the potential update. 1 means update, 0 don’t
update. 1 1 0 means update 2 iterations, then don’t one iteration update, then
repeat. (default 1)
espresso Espresso specific options for this interations
espresso.table Name of file for tabulated potential of this interaction. This
fill will be created from the internal tabulated potential format in every step.
Note, though, that the original espresso script needs to contain the name of
that table as the tabulated interaction (see tutorial methanol ibi espresso for
details).
gromacs Gromacs specific options for this interations
gromacs.table Name of file for tabulated potential of this interaction. This
fill will be created from the internal tabulated potential format in every step.
imc ection containing inverse monte carlo specific options.
imc.group Group of interaction. Cross-correlations of all members of a group
are taken into account for calculating the update. If no cross correlations should
be calculated, interactions have to be put into different groups.
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lammps lammps specific options for this interations

lammps.scale x-axis scaling factor for the potential output, can be used to
convert VOTCA units, nm, to other units, e.g. angstroms (default 1)
lammps.table Name of file for tabulated potential of this interaction. This
fill will be created from the internal tabulated potential format in every step.
Note, though, that the lammps script needs to contain the name of that table
as the tabulated interaction and the interaction is stored in the VOTCA section
of the file..

lammps.y scale y-axis scaling factor for the potential output, can be used
to convert VOTCA units, kJ/mol, to other units, e.g. kcal/mol (default 1)
optimizer

optimizer.density Contains all options for the density calculation of the op-
timizer

optimizer.density.axis Axis along which the density is calculated (default x)
optimizer.density.max Upper bound of interval in which density calculation
is performed.

optimizer.density.min Lower bound of interval in which density calculation
is performed.

optimizer.density.molname The molname of this interaction (default *)
optimizer.density.scale Scaling factor for density (default 1.0)
optimizer.density.step Step size of interval in which density calculation is
performed.

optimizer.density.target Filename of the target denstiy distribution in the
maindir

optimizer.function Functional form of the interaction, using parameters in
here

optimizer.functionfile If the function is very complicated it can be defined
in this files, which is used as an header

optimizer.mapping option related to mapping changes
optimizer.mapping.change Does the mapping change in optimization: yes/no
(default no)

optimizer.mapping.output Output file name for mapping (default no)
optimizer.mapping.template template for the mapping optimization
optimizer.parameters Parameters to be fitted by the optimizer for this in-
teraction. Note that the parameter names are global

optimizer.pressure Contains all options for the pressure calculation of the
optimizer

optimizer.pressure.undef Pressure to use if pressure from the simulation
was nan (use a big number)

optimizer.rdf Contains all options for the rdf calculation of the optimizer
optimizer.rdf.target Filename of the target rdf in the maindir
optimizer.rdf.weight Weighting function for calculating the convergency of
the rdf

optimizer.rdf.weightfile File with the weighting function definition calculat-
ing the rdf

optimizer.target weights Weight of the targets, amount has to be the same
as of targets (default 1)

optimizer.targets Targets to be fitted by the optimizer (default rdf)
p_target pressure contribution of this interaction

particle dens particle density of this species (for wjk pressure correction)
post__add Additional post processing of U after dU added to potential. This
is a list of scripts separated by spaces which are called. See section on iterative
framework for details.

post _add_options Contains all options of post add scripts
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post add_options.average
post add options.average.what list for which averages of last few steps

are to computed: param, pot, ... For relative entropy method, specify param
before pot.

post _add _options.compress Contains all options of the postadd compress
sripts

post add options.compress.filelist Files to be compressed

post _add _options.compress.program Compression command to run (de-
fault gzip)

post _add options.compress.program _opts Option to give to the com-
pression command (default -9)

post _add options.convergence

post add options.convergence.base what base values to be used to com-
pute convergene error: tgt, cur, .. (default tgt)

post _add _options.convergence.norm which norm to use to compute er-
ror: 1 first norm, 2 second norm (default 1)

post _add_options.convergence.weight weight factors for the convergence
of this interaction, should be a list of same length as inverse.post _add _options.convergence.what
(default 1)

post add options.convergence.what list from what to calc the conver-
gence: dist pot, .. (default dist)

post _add_options.copyback Contains all options of the postadd copyback
sripts

post _add options.copyback.filelist File to be copied to back to maindir
post add options.overwrite Contains all options of the overwrite postadd
scripts

post _add_options.overwrite.do Cycle for overwrite postadd script (1 do,
0 do not) like do_potential. (default 1)

post _add options.plot Contains all options of the plot postadd scripts
post _add options.plot.fd file descriptor to use, make it unique if you want
to plot multiple things (default 8)

post _add_options.plot.gnuplot opts extra options to give to gnuplot_ bin
like -persist or -geometry

post _add options.plot.kill kill all processes with that name before ploting
(e.g. gnuplot x11), this is more reliable than using named pipes

post add options.plot.script plot script to give to gnuplot

post _update Additional post-processing of dU before added to potential.
This is a list of scripts separated by spaces which are called. See section on
iterative framework for details.

post _update options Contains all options of post update scripts

post _update options.cibi Contains all options of the Kirkwood-Buff inte-
gral corrections scripts (default no)

post _update_ options.cibi.do Update cycle for the Kirkwood-Buff integral
correction (1 do, 0 do not). To do the correction every third step specify "0 0
1", similar to do_ potential (default 1)

post update options.cibi.kbint with errors calculate errors on the Kirkwood-
Buff integral: yes/no (default no)

post _update_options.extrapolate

post _update options.extrapolate.points Number of point to calculate
the average from for the extrapolation (default 5)

post _update options.kbibi Contains all options of the Kirkwood-Buff ramp
corrections scripts (default no)

post _update options.kbibi.do Update cycle for the Kirkwood-Buff ramp
correction (1 do, 0 do not). To do the correction every third step specify "0 0
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1", similar to do_potential (default 1)

post _update options.kbibi.factor scaling factor for the ramp correction
post update options.kbibi.kbint with errors calculate errors on the
Kirkwood-Buff integral: yes/no (default no)

post _update options.kbibi.r ramp cutoff of the ramp

post _update options.kbibi.start Where to start averaging the Kirkwood-
Buff integral for the ramp

post _update options.kbibi.stop Where to stop averaging the Kirkwood-
Buff integral for the ramp

post _update_ options.lj Contains all options of the Lennard-Jones potential
update

post _update options.lj.c12 The c12 value for the extra LJ potential
post _update options.lj.c6 The c6 value for the extra LJ potential

post _update options.pressure Contains all options of the pressure cor-
rection scripts

post _update options.pressure.do Update cycle for the pressure correc-
tion (1 do, 0 do not). To do pressure correction every third step specify "0 0
1", similar to do_ potential (default 1)

post _update options.pressure.ptype Generic Pressure correction options
post _update options.pressure.ptype.max A maximum prefactor in units
of kBT

post _update options.pressure.ptype.scale slope of the pressure correc-
tion

post _update options.pressure.simple Contains all options of the simple
pressure correction

post _update options.pressure.simple.max A maximum prefactor in units
of kBT (default 0.1)

post _update options.pressure.simple.scale slope of the simple pressure
correction

post _update options.pressure.type Pressure correction type, can be sim-
ple or wjk (default simple)

post _update options.pressure.wjk Contains all options of the wjk pres-
sure correction

post _update options.pressure.wjk.max A maximum prefactor in units
of kBT (default 0.1)

post _update options.pressure.wjk.scale extra scaling factor of pressure
wjk correction (default 1.0)

post _update options.scale scale factor for the update (default 1.0)

post update options.smooth Contains all options of the post_update
smooth script

post _update options.smooth.iterations number of triangular smooth to
be performed (default 1)

post _update options.splinesmooth Contains all options of the post_ update
spline smooth script

post _update options.splinesmooth.step grid spacing for spline fit when
doing spline smoothing

sim__prog interaction specific options, which apply to all simulation programs
sim_prog.table Name of file for tabulated potential of this interaction. This
fill will be created from the internal tabulated potential format in every step.
Note, though, that the original simulation script needs to contain the name of
that table as the tabulated interaction (see tutorial methanol ibi_espresso for
details).

sim_prog.table begin Start of the tabulated potential of this interaction.
(Automatic for gromacs)
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sim_prog.table bins Binszie of the tabulated potential of this interaction.
(gromacs uses a non interaction specific option)
sim_prog.table end End of the tabulated potential of this interaction. (Au-
tomatic for gromacs)
sim_prog.table left extrapolation Extrapolation function to use on the
left. Default: exponential(non-bonded), linear (bonded), Options: constant
linear quadratic exponential sasha
sim_prog.table right extrapolation Extrapolation function to use on
the right. Default: constant(non-bonded), linear (bonded), Options: constant
linear quadratic exponential sasha
target target distribution (e.g. rdf) which is tried to match during iterations
to match
max Upper bound of interval for potential table in which calculations are per-
formed. Should be set based on reference distributions.
min Lower bound of interval for potential table in which calculations are performed.
Should be set based on reference distributions.
name Name of the interaction. The name can be arbitrary but should be unique.
For bonded interactions, this should match the name specified in the mapping file.
re Relative entropy options
cbspl options specific to cbspl function form
cbspl.nknots Number of knot values to be used for the cbspl functional form.
Uniform grid size of the CBSPL depends on this parameter; for fixed potential
range more the nknots smaller the grid spacing. Make sure grid spacing is
sufficiently large and enough CG simulation steps are performed such that the
bins at distance greater than the minimum distance are sampled sufficiently
otherwise ill-defined system of equation would give NaNs in the output.
function Functional form for the potential. Available functional forms: 1j126
(Lennard-Jones 12-6), ljg (Lennard-Jones 12-6 plus Gaussian), and cbspl (uni-
form cubic B-splines).
step Step size of interval for potential table in which calculations are performed.
If step site is too small, lots of statistics is needed ( long runs ). If it’s too big,
features in the distribtuion/potentials might get lost.
typel Bead type 1 of non-bonded interaction.
type2 Bead type 2 of non-bonded interaction.
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10.5 Scripts

Scripts are used by csg call and csg inverse.
csg_call -list):

Keyl

tag

dummy
functions

csg

prepare
prepare
prepare
prepare
prepare
prepare single
prepare single
prepare_single
initstep
initstep
initstep
initstep
add_pot
add_pot
add_pot
add_pot
pre_update
pre_update
pre_update
pre_update
post__update
post__update
post__update
post__update

post _update _single
post update single
post update single

postupd
postupd
postupd
postupd
postupd
postupd
postupd
postupd
postupd
postupd
postupd
post

post

postadd
postadd
postadd
postadd

Key2

file
dummy
common
master
ibi

imc
generic
optimizer
re

ibi

imc
optimizer
ibi

imc
optimizer
re

ibi

imc
optimizer
re

ibi

imc
optimizer
re

ibi

imc
optimizer
re

ibi

imc

re

scale
pressure
Iy
splinesmooth
smooth
shift
dummy
tag
extrapolate
kbibi

cibi

add
add_single
tag
dummy
copyback
compress
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The script table commonly used (compare

Scriptname

tag_file.sh

dummy.sh

functions _common.sh
inverse.sh

prepare generic.sh
prepare_imc.sh

prepare _generic.sh
prepare_optimizer.sh
prepare re.sh

prepare generic_single.sh
prepare generic_single.sh
prepare optimizer single.sh
initialize step generic.sh
initialize step generic.sh
initialize step optimizer.sh
initialize step re.sh

add _pot generic.sh

add _pot generic.sh
dummy.sh

dummy.sh

dummy.sh

dummy.sh

dummy.sh

pre_update re.sh

post _update generic.sh
post _update generic.sh
dummy.sh

post__update generic.sh
post _update generic_single.sh
post _update generic_single.sh
post update re single.sh
postupd _scale.sh

postupd _pressure.sh
postupd _addlj.sh

postupd _splinesmooth.sh
postupd _smooth.sh

postadd shift.sh

postadd _dummy.sh
tag_file.sh

postupd _extrapolate.sh
postupd kbibi correction.sh
postupd cibi correction.sh
post add.sh

post _add_single.sh
tag_file.sh

postadd dummy.sh

postadd copyback.sh
postadd compress.sh



10.5. SCRIPTS

postadd
postadd
postadd
postadd
postadd
postadd

convergence _check

resample
update
update
update
update
update
optimizer
optimizer
optimizer
optimizer
update
update
optimizer target
optimizer target
optimizer target
simplex

cma

update

calc
pressure_cor
pressure_cor
compute lj
kbibi

calc

table

table

table

table

table

table

table

table

table

table

table

table

table

table

table
potential
potential
convert_ potential
dist

dist

tables
initstep

run

convergence
acc__convergence
shift

overwrite

plot

average

default

target

ibi

ibi _single

ibi pot

imc

imc_single
prepare_state

parameters to potential
state _to_potentials
stateto mapping

optimizer
optimizer _single
rdf

density
pressure
precede _state
precede _state
re

target rdf
simple

wik

12 6

ramp _correction
kbint

add

integrate
extrapolate
merge

smooth
linearop
dummy

get value
switch _border
compare
combine
average

scale

change flag
functional
extrapolate
shift

tab

adjust

invert
jackknife
gromacs
gromacs
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postadd convergence.sh
postadd _acc__convergence.sh
postadd _shift.sh

postadd _overwrite.sh
postadd plot.sh

postadd average.sh
convergence check default.sh
resample target.sh

update ibi.sh

update ibi_single.sh

update ibi_pot.pl

update imc.sh

update imc_single.sh
optimizer prepare state.sh
optimizer parameters to potential.sh
optimizer state to potentials.sh
optimizer state to mapping.sh
update optimizer.sh

update optimizer single.sh
optimizer target rdf.sh
optimizer target density.sh
optimizer target pressure.sh
simplex downhill processor.pl
cma_ processor.py

update re.sh
calc_target rdf generic.sh
pressure cor simple.pl
pressure cor wijk.pl

lj _126.pl

kbibi ramp correction.pl
calc_ kbint.sh

add POT.pl

table integrate.pl

table extrapolate.pl

merge _tables.pl

table smooth.pl

table linearop.pl

table dummy.sh
table get wvalue.pl

table switch border.pl

table combine.pl

table combine.pl

table average.sh

table scale.pl

table change flag.sh

table functional.sh

potential extrapolate.sh
potential shift.pl
table to tab.pl

dist _adjust.pl

dist boltzmann invert.pl
tables jackknife.pl

initialize step genericsim.sh
run_ gromacs.sh



clean
presimulation
pressure

pressure

rdf

imc_ stat

density

convert_ potential
convert_ potentials
convert_ potential
functions

initstep

run

clean

rdf

imc_ stat

density

convert_ potential
convert_ potentials
functions

convert_ potential
convert_ potentials
initstep

run

clean

rdf

imc_ stat

density

functions

convert_ potential
convert_ potentials
initstep

run

clean

rdf

imc_stat

density

functions

initstep

run

clean

rdf

imc_ stat

density

functions

convert_ potential
convert_ potentials
convert_ potential
convert_ potentials
initstep

run

clean

rdf

imc_ stat

gromacs
gromacs
gromacs
lammps
gromacs
gromacs
gromacs
gromacs
gromacs
Xvg
gromacs
espresso
espresso
espresso
espresso
espresso
espresso
espresso
espresso
espresso
lammps
lammps
lammps
lammps
lammps
lammps
lammps
lammps
lammps
espressopp
espressopp
espressopp
espressopp
espressopp
espressopp
espressopp
espressopp
espressopp
dlpoly
dlpoly
dlpoly
dlpoly
dlpoly
dlpoly
dlpoly
dlpoly
dlpoly
hoomd-blue
hoomd-blue
hoomd-blue
hoomd-blue
hoomd-blue
hoomd-blue
hoomd-blue
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clean generic.sh
run_gromacs.sh
calc_pressure gromacs.sh
calc pressure lammps.sh
calc_rdf generic.sh
imc_stat generic.sh
calc_density generic.sh
potential to gromacs.sh
potentials _to generic.sh
table to xvg.pl

functions gromacs.sh
initialize step genericsim.sh
run_ genericsim.sh

clean generic.sh
calc_rdf generic.sh
imc_stat generic.sh
calc_density generic.sh
potential to generic.sh
potentials _to generic.sh
functions genericsim.sh
potential to lammps.sh
potentials to generic.sh
initialize step genericsim.sh
run_genericsim.sh

clean generic.sh
calc_rdf generic.sh
imc_stat generic.sh
calc_density generic.sh
functions genericsim.sh
potential to generic.sh
potentials to generic.sh
initialize step genericsim.sh
run_ genericsim.sh

clean generic.sh
calc_rdf generic.sh
imc_stat generic.sh
calc_density generic.sh
functions genericsim.sh
initialize step genericsim.sh
run_genericsim.sh

clean generic.sh
calc_rdf generic.sh
imc_stat generic.sh
calc_density generic.sh
functions dlpoly.sh
potential to dlpoly.sh
potentials to dlpoly.sh
potential to generic.sh
potentials to generic.sh
initialize step genericsim.sh
run_genericsim.sh

clean generic.sh
calc_rdf generic.sh
imc_stat generic.sh
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density hoomd-blue calc_density generic.sh
functions hoomd-blue functions genericsim.sh

Script calls can be overwritten by adding a line with the 3rd column changed to csg_table in
wmverse.scriptpath directory.

10.5.1 add_ POT.pl

This script adds up two potentials In addition, it does some magic tricks:
order of infiles MATTERS !!!!
if infile2 contains an undefined value, it uses the value from infilel
if value for infilel and infile2 are both invalid, the result is also invalid
Usage: csg_call [OPTIONS] table add infilel infile2 outfile

10.5.2 add_ pot generic.sh

This script adds up the tables
Usage: csg_call [OPTIONS] add_pot ibi
Used xml options:

cg.{non-}bonded.name

10.5.3 calc_density generic.sh

This script calcs the density using csg density
Usage: csg_call [OPTIONS] density gromacs outputfile csg_density_options
Used xml options:
cg.inverse.$sim_ prog.density.block length
cg.inverse.$sim_ prog.density.with _errors
cg.inverse.$sim_ prog.equi_time
cg.inverse.$sim_ prog.first frame
cg.inverse.$sim_ prog.topol
cg.inverse.$sim_ prog.traj
cg.inverse.program
cg.{non-}}bonded.name

10.5.4 calc_kbint.sh

This script calculates the Kirkwood-Buff integral out of the rdf
Usage: csg_call [OPTIONS] calc kbint [options] infile outfile
Allowed options:

——help show this help

——clean remove all intermediate temp files
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10.5.5 calc pressure gromacs.sh

This script calcs the pressure for gromacs and writes it to outfile
Usage: csg_call [OPTIONS] pressure gromacs outfile
Used external packages: gromacs
Used xml options:
cg.inverse.gromacs.g energy.bin
cg.inverse.gromacs.g__energy.opts (optional)
cg.inverse.gromacs.g__energy.pressure.allow nan
cg.inverse.gromacs.g__energy.topol (optional)
cg.inverse.gromacs.topol

10.5.6 calc_pressure lammps.sh

This script calcs the pressure for lammps and writes it to outfile
Usage: csg_call [OPTIONS] pressure lammps outfile
Used external packages: lammps
Used xml options:

cg.inverse.lammps.pressure _ file

10.5.7 calc_rdf generic.sh
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This script implemtents statistical analysis for the iterative Boltzmann inversion using generic csg

tools (csg_stat)

Usage: csg_call [OPTIONS] rdf gromacs

Used xml options:
cg.bonded.name (optional)
cg.inverse.$sim_prog.equi_time
cg.inverse.$sim _prog.first frame
cg.inverse.$sim prog.rdf.block length
cg.inverse.$sim_ prog.rdf.map (optional)
cg.inverse.$sim_prog.rdf.topol (optional)
cg.inverse.$sim_prog.rdf.traj (optional)
cg.inverse.$sim _prog.rdf.with errors
cg.inverse.$sim_ prog.topol
cg.inverse.$sim  prog.traj
cg.inverse.map (optional)
cg.inverse.program
cg.{non-}bonded.name

10.5.8 calc_target rdf generic.sh

This script calculated reference rdf using generic csg_stat
Usage: csg_call [OPTIONS] calc target_rdf
Used xml options:
cg.inverse.gromacs.ref.equi_time
cg.inverse.gromacs.ref.first frame
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cg.inverse.gromacs.ref.mapping
cg.inverse.gromacs.ref.rdf.opts (optional)
cg.inverse.gromacs.ref.topol
cg.inverse.gromacs.ref.traj
cg.inverse.program

10.5.9 clean generic.sh

This script cleans up after a simulation step
Usage: csg_call [OPTIONS] clean gromacs
Used xml options:

cg.inverse.cleanlist (optional)

10.5.10 cma_processor.py

usage: cma_ processor.py [-h| --eps
usage: %prog [options| statefile-in statefile-out
optional arguments:
-h, —-help show this help message and exit
——eps EPS tolerance for initialization

10.5.11 convergence check default.sh
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Calculated the sum of all convergence files and create a file 'stop’ if the sum is bigger than a given

limit
Usage: csg_call [OPTIONS] convergence_check default
Used xml options:

cg.inverse.convergence check.limit

cg.{non-}}bonded.name

10.5.12 dist adjust.pl

This script adjusts a distribution in such a way that value smaller 0 will be replaces with 0.

Usage: csg_call [OPTIONS] dist adjust [OPTIONS] <in> <out>
Allowed options:

-h, —--help Show this help message
Examples:

dist_adjust.pl CG-CG.dist.tmp CG-CG.dist.new

10.5.13 dist boltzmann invert.pl

Boltzmann inverts a distribution (F'(z) = —kgT Ing(z))
In addtion, it does some magic tricks:
do not crash when calc log(0)
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choose the right normalization depending on the type of interaction
input dist should be unnormalized (like csg_stat cales it)
Usage: csg_call [OPTIONS] dist invert [OPTIONS] <in> <out>
Allowed options:
——kbT NUMBER use NUMBER as kp * T for the entropic part
-—type XXX change the type of interaction Default: non-bonded
——-min XXX minimum value to consider Default: 1e-10
-h, —--help Show this help message
Possible types: non-bonded, bond, angle, dihedral
Examples:
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dist_boltzmann_invert.pl —--kbT 2.49435 —--min 0.001 tmp.dist tmp.pot

10.5.14 dummy.sh

dummy script (does nothing), useful to overwrite default by nothing
Usage: csg_call [OPTIONS] dummy dummy

10.5.15 functions common.sh

This file defines some commonly used functions:

msg -- echos a msg on the screen and send it to the logfile if logging is enabled
show_callstack -- show the current callstack

die -- make the iterative frame work stopp

cat_external -- takes a two tags and shows content of the according script
do_external -- takes two tags, find the according script and excute it

critical -- executes arguments as command and calls die if not succesful
csg_get_interaction_property -- gets an interaction property from the xml file,
should only be called from inside a for all loop or with --all option

csg_get_property -- get an property from the xml file

trim_all -- make multiple lines into one and strip white space from beginning and the
end, reads from stdin

mark_done -- mark a task (1st argument) as done in the restart file

is_done -- checks if something is already do in the restart file

is_int -- checks if all arguments are integers

to_int -- convert all given numbers to int using awk’s int function

is_part -- checks if 1st argument is part of the set given by other arguments
has_duplicate -- check if one of the arguments is double

remove_duplicate -- remove duplicates list of arguments

is_num -- checks if all arguments are numbers

get_stepname -- get the dir name of a certain step number (1st argument)
get_current_step_dir -- print the directory of the current step
get_last_step_dir -- print the directory of the last step

get_main_dir -- print the main directory

get_current_step_nr -- print the main directory

get_step_nr -- print the number of a certain step directory (1st argument)
cp_from_main_dir -- copy something from the main directory

cp_from_last_step -- copy something from the last step

get_time -- gives back current time in sec from 1970

get_number_tasks -- get the number of possible tasks from the xml file or determine it
automatically under some systems
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get_table_comment -- get comment lines from a table and add common information,
which include the git id and other information
csg_inverse_clean -- clean out the main directory
check_path_variable -- check if a variable contains only valid paths
add_to_csgshare -- added an directory to the csg internal search directories
globalize_dir -- convert a local directory to a global one
globalize_file -- convert a local file name to a global one
source_function -- source an extra function file
csg_banner -- print a big banner
csg_calc -- simple calculator, a + b, ...
show_csg_tables -- show all concatinated csg tables
get_command_from_csg_tables -- print the name of script belonging to certain tags
(1st, 2nd argument)
source_wrapper -- print the full name of a script belonging to two tags (1st, 2nd argu-
ment)
find_in_csgshare -- find a script in csg script search path
enable_logging -- enables the logging to a certain file (1st argument) or the logfile taken
from the xml file
get_restart_file -- print the name of the restart file to use
check_for_obsolete_xml_options -- check xml file for obsolete options
command_not_found_handle -- print and error message if a command or a function was
not found

Used xml options:
cg.inverse.log file (default: 2> /dev/null)
cg.inverse.map (optional)
cg.inverse.program
cg.inverse.restart _file
cg.inverse.simulation.tasks
cg.{non-}bonded.bondtype
cg.{non-}bonded.min
cg.{non-}bonded.name

10.5.16 functions dlpoly.sh

Useful functions for the generic simulation program:
simulation_finish -- checks if simulation is finished
checkpoint_exist -- check if a checkpoint exists (REVIVE _and REVCON - both are
needed!)
get_simulation_setting -- gets parameter a parameter from the settings file (1st ar-
gument) from simulation setting file (not implemented)
Used xml options:
cg.inverse.dlpoly.checkpoint
cg.inverse.dlpoly.topol
cg.inverse.dlpoly.traj
cg.inverse.program

10.5.17 functions genericsim.sh

Useful functions for the generic simulation program:
simulation_finish -- checks if simulation is finished
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checkpoint_exist -- check if a checkpoint exists (not implemented)
get_simulation_setting -- gets parameter a parameter from the settings file (1st ar-
gument) from simulation setting file (not implemented)

Used xml options:
cg.inverse.$sim _ prog.traj
cg.inverse.program

10.5.18 functions gromacs.sh

Useful functions for gromacs:
get_simulation_setting -- gets a parameter (1st argument) from gromacs mdp file
(default 2nd parameter)
check_temp -- compares kB T in xml with temp in mpd file
simulation_finish -- checks if simulation is finished
checkpoint_exist -- check if a checkpoint exists
calc_begin_time -- return the max of dt*frames and eqtime
calc_end_time -- return dt * nsteps
gromacs_log -- redirect stdin to a separate gromacs log file, 1st argument can be the name
of the command to echo if redirection takes place

Used external packages: gromacs

Used xml options:
cg.inverse.gromacs.conf out
cg.inverse.gromacs.equi_ time
cg.inverse.gromacs.first _frame
cg.inverse.gromacs.gmxrc (optional)
cg.inverse.gromacs.log (optional)
cg.inverse.gromacs.mdp
cg.inverse.gromacs.mdrun.checkpoint
cg.inverse.gromacs.pre_simulation
cg.inverse.gromacs.temp check
cg.inverse.gromacs.traj
cg.inverse. kBT
cg.inverse.log file

10.5.19 imc_stat generic.sh

This script implemtents statistical analysis for the Inverse Monte Carlo Method using generic csg
tools (csg_stat)
Usage: csg_call [OPTIONS] imc_stat gromacs
Used xml options:
cg.inverse.$sim_prog.equi_time
cg.inverse.$sim _prog.first frame
cg.inverse.$sim _prog.imc.topol (optional)
cg.inverse.$sim _prog.imc.traj (optional)
cg.inverse.$sim  prog.topol
cg.inverse.$sim  prog.traj
cg.inverse.program
cg.{non-}bonded.inverse.target
cg.{non-tbonded.name
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10.5.20 initialize step generic.sh

This script implements the initialization for every step in a generic way
Usage: csg_call [OPTIONS] initstep ibi
Used xml options:

cg.inverse.program

cg.{non-}bonded.name

10.5.21 initialize step genericsim.sh

This script initializes an iteration for the generic simulation program
Usage: csg_call [OPTIONS] initstep gromacs
Used xml options:

cg.inverse.$sim_ prog.conf (optional)

cg.inverse.$sim_ prog.conf out (optional)

cg.inverse.initial configuration

cg.inverse.program

10.5.22 initialize step optimizer.sh

This script implements the initialization for every step in a generic way
Usage: csg_call [OPTIONS] initstep optimizer
Used xml options:

cg.inverse.optimizer.type

cg.inverse.program

cg.{non-}}bonded.name

10.5.23 initialize step re.sh

This script implements the initialization for every step of relative entropy method by csg reupdate
program
Usage: csg_call [OPTIONS] initstep re
Used xml options:
cg.inverse.program
cg.{non-}}bonded.name

10.5.24 inverse.sh

Start the script to run ibi, imc, etc. or clean out current dir
Usage: csg_call [OPTIONS] csg master [OPTIONS] --options settings.xml [clean]
Allowed options:

-h, —-help show this help

-N, —--do-iterations N only do N iterations (ignoring settings.xml)

-—-wall-time SEK Set wall clock time

——options FILE Specify the options xml file to use

——debug enable debug mode with a lot of information
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——nocolor disable colors

Examples:
inverse.sh —--options cg.xml
inverse.sh -6 —--options cg.xml

Used xml options:
cg.inverse.convergence _check.type
cg.inverse.filelist (optional)
cg.inverse.iterations  max
cg.inverse.method
cg.inverse.program
cg.inverse.scriptpath (optional)
cg.inverse.simulation.background

10.5.25 kbibi_ramp correction.pl

This script calculates Kirkwood-Buff correction as described in: P. Ganguly, D. Mukherji, C.
Junghans, N. F. A. van der Vegt, Kirkwood-Buff coarse-grained force fields for aqueous solutions,
J. Chem. Theo. Comp., 8, 1802 (2012), doi:10.1021/ct3000958
Usage: csg_call [OPTIONS] kbibi ramp_correction [OPTIONS] kbint target_kbint
outfile kBT min:step:max int_start:int_end ramp_factor
Allowed options:

-h, —--help Show this help message

10.5.26 1j 126.pl

This script calculates the LJ 12-6 potential U = C12/r'2 — C6/r°
Usage: csg_call [OPTIONS] compute_17j 12_6 outfile min:step:max C6 C12

10.5.27 merge tables.pl

Merge two tables
Usage: csg_call [OPTIONS] table merge [OPTIONS] <source> <dest> <out>
Allowed options:
-v, —--version Print version
-h, —-help Show this help message
-—withflag only change entries with specific flag in src
-—-noflags don’t copy flags
——novalues don’t copy values
Examples:
merge_tables.pl intable intable2 outtable

10.5.28 optimizer parameters to potential.sh

This script generates a single potential (.pot.new) out a parameter value string (1st argument)
Usage: csg_call [OPTIONS] optimizer parameters_to_potential parametervalues
Used xml options:
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cg.{non-}bonded.inverse.optimizer.function
cg.{non-}bonded.inverse.optimizer.functionfile (optional)
cg.{non-}bonded.inverse.optimizer.parameters
cg.{non-}bonded.max

cg.{non-}bonded.min

cg.{non-}}bonded.name

cg.{non-tbonded.step

10.5.29 optimizer prepare state.sh

This script generates the initial state file and puts all in-file together
Usage: csg_call [OPTIONS] optimizer prepare_state outputfile
Used xml options:

cg.inverse.optimizer.cma.eps

cg.inverse.optimizer.type

cg.{non-}bonded.inverse.optimizer.parameters

cg.{non-}}bonded.name

10.5.30 optimizer state to mapping.sh

This script generates a mapping for the reference mapping from the parameters of the active in

input state using the mapping template

Usage: csg_call [OPTIONS] optimizer state_to_mapping input

Used xml options:
cg.{non-}bonded.inverse.optimizer.mapping.change
cg.{non-}bonded.inverse.optimizer.mapping.output
cg.{non-}bonded.inverse.optimizer.mapping.template
cg.{non-}bonded.inverse.optimizer.parameters
cg.{non-tbonded.name

10.5.31 optimizer state to potentials.sh

This script generates potential (.pot.new) for all interactions out the first pending line in the input
state file and flags this line active in output state
Usage: csg_call [OPTIONS] optimizer state_to_potentials input output

10.5.32 optimizer target density.sh

Calculated the difference between rdf

Usage: csg_call [OPTIONS] optimizer_target density

Used xml options:
cg.inverse.program
cg.{non-}bonded.inverse.optimizer.density.axis
cg.{non-}bonded.inverse.optimizer.density. max
cg.{non-}bonded.inverse.optimizer.density.min
cg.{non-}bonded.inverse.optimizer.density.molname
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cg.{non-}bonded.inverse.optimizer.density.scale
cg.{non-}bonded.inverse.optimizer.density.step
cg.{non-}bonded.inverse.optimizer.density.target
cg.{non-tbonded.name

10.5.33 optimizer target pressure.sh

Calculates the difference current and target pressure
Usage: csg_call [OPTIONS] optimizer_target pressure
Used xml options:
cg.inverse.program
cg.{non-}bonded.inverse.optimizer.pressure.undef (optional)
cg.{non-}bonded.inverse.p _target
cg.{non-tbonded.name

10.5.34 optimizer target rdf.sh

Calculated the difference between rdf
Usage: csg_call [OPTIONS] optimizer_target rdf
Used xml options:
cg.inverse.optimizer.type
cg.inverse.program
cg.{non-}}bonded.inverse.optimizer.mapping.change
cg.{non-}bonded.inverse.optimizer.rdf.target
cg.{non-}bonded.inverse.optimizer.rdf.weight (optional)
cg.{non-}bonded.inverse.optimizer.rdf.weightfile (optional)
cg.{non-}bonded.max
cg.{non-}bonded.min
cg.{non-}bonded.name
cg.{non-}bonded.step

10.5.35 post add.sh

This script makes all the post update
Usage: csg_call [OPTIONS] post add

10.5.36 post add _single.sh

This script makes all the post update with backup for single pairs
Usage: csg_call [OPTIONS] post add_single
Used xml options:
cg.{non-}bonded.inverse.post__add (optional)
cg.{non-tbonded.name

REFERENCE
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10.5.37 post update generic.sh

This script makes all the post update
Usage: csg_call [OPTIONS] post_update ibi
Used xml options:

cg.inverse.method

10.5.38 post update generic_single.sh

This script makes all the post update with backup for single pairs incl. backups
Usage: csg_call [OPTIONS] post_update_single ibi
Used xml options:

cg.{non-}bonded.inverse.post__update (optional)

cg.{non-}bonded.name

10.5.39 post update re single.sh

This script makes all the post update with backup for single pairs incl. backups
Usage: csg_call [OPTIONS] post_update_single re
Used xml options:

cg.{non-tbonded.inverse.post _update (optional)

cg.{non-}bonded.name

10.5.40 postadd acc convergence.sh

postadd accumulate convergence script: accumulate ${name}.conv of all steps
Usage: csg_call [OPTIONS] postadd acc_convergence infile outfile
Used xml options:

cg.{non-}}bonded.name

10.5.41 postadd average.sh

postadd average script, calcs averages of (${name}.DIST.cur) for the past few steps and saves it
to ${name}.DIST.avg DIST can be specified by average.what option
usage: postadd average.sh
Used xml options:
cg.inverse.average.steps (default: 2)
cg.inverse.method
cg.{non-}bonded.inverse.post _add options.average.what
cg.{non-}bonded.name
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10.5.42 postadd compress.sh

postadd compress script, compresses files

Usage: csg_call [OPTIONS] postadd compress

Used xml options:
cg.{non-}bonded.inverse.post _add options.compress.filelist
cg.{non-tbonded.inverse.post _add options.compress.program
cg.{non-}bonded.inverse.post _add options.compress.program_opts (optional)

10.5.43 postadd convergence.sh

postadd convergence script, calcs norm of error (${name}.DIST.BASE-${name}.DIST.new) and
saves it to ${name}.conv. DIST stands for ’dist’, but can be changed by onvergence.what option
usage: postadd convergence.sh
Used xml options:
cg.inverse.method
cg.{non-}bonded.inverse.post _add options.convergence.base
cg.{non-}bonded.inverse.post _add options.convergence.norm
cg.{non-}bonded.inverse.post _add _options.convergence.weight
cg.{non-}bonded.inverse.post _add _options.convergence.what
cg.{non-}bonded.inverse.target
cg.{non-}bonded.max
cg.{non-}bonded.min
cg.{non-}bonded.name
cg.{non-}tbonded.step

10.5.44 postadd copyback.sh

postadd copyback script, copies files back to the maindir
Usage: csg_call [OPTIONS] postadd copyback
Used xml options:
cg.{non-}bonded.inverse.post _add options.copyback.filelist

10.5.45 postadd dummy.sh

postadd dummy script (cp infile to outfile), useful to overwrite default by nothing
Usage: csg_call [OPTIONS] postupd dummy infile outfile

10.5.46 postadd overwrite.sh

postadd overwrite script, overwrites potential of all other interactions with this one

Usage: csg_call [OPTIONS] postadd overwrite infile outfile

Used xml options:
cg.{non-}bonded.inverse.post__add
cg.{non-}bonded.inverse.post _add _options.overwrite.do
cg.{non-}}bonded.name
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10.5.47 postadd plot.sh

postadd plot script, send a certain plot script to gnuplot

Usage: csg_call [OPTIONS] postadd plot

Used external packages: gnuplot

Used xml options:
cg.inverse.gnuplot.bin
cg.{non-}bonded.inverse.post _add _options.plot.gnuplot opts (optional)
cg.{non-}bonded.inverse.post _add _options.plot.kill (optional)
cg.{non-}bonded.inverse.post _add options.plot.script

10.5.48 postadd shift.sh

postadd shift script, shift pot and dpot
Usage: csg_call [OPTIONS] postupd shift infile outfile
Used xml options:

cg.{non-}bonded.bondtype

10.5.49 postupd addlj.sh

This script adds LJ 12-6 component to the CG potential
Usage: csg_call [OPTIONS] postupd 1j infile outfile
Used xml options:
cg.{non-}bonded.inverse.post _update options.lj.c12
cg.{non-}bonded.inverse.post _update options.lj.c6
cg.{non-}bonded.max
cg.{non-}bonded.min
cg.{non-tbonded.name
cg.{non-tbonded.step

10.5.50 postupd cibi_correction.sh

This script implemtents the post update routine for the integral Kirkwood-Buff corrections de-
scribed in: T. E. de Oliveira, P. A. Netz, K. Kremer, C. Junghans, and D. Mukherji, C-IBI:
Targeting cumulative coordination within an iterative protocol to derive coarse-grained models of
(multi-component) complex fluids, J. Chem. Phys. (in press).
Usage: csg_call [OPTIONS] postupd cibi
Used xml options:
cg.inverse.$sim_prog.rdf.with errors
cg.inverse. kBT
cg.inverse.program
cg.{non-}bonded.bondtype
cg.{non-}bonded.inverse.post _update options.cibi.do
cg.{non-}bonded.inverse.post _update options.cibi.kbint with errors
cg.{non-bonded.inverse.target
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cg.{non-}bonded.max
cg.{non-}bonded.min
cg.{non-tbonded.name
cg.{non-tbonded.step

10.5.51 postupd extrapolate.sh

This script implements extrapolation undefined region of the potential update (.dpot)
Usage: csg_call [OPTIONS] postupd extrapolate infile outfile
Used xml options:
cg.{non-}bonded.bondtype
cg.{non-}bonded.inverse.post _update options.extrapolate.points
cg.{non-}}bonded.name

10.5.52 postupd kbibi correction.sh

This script implemtents the post update routine for the ramp Kirkwood-Buff corrections as de-
scribed in: P. Ganguly, D. Mukherji, C. Junghans, N. F. A. van der Vegt, Kirkwood-Buff coarse-
grained force fields for aqueous solutions, J. Chem. Theo. Comp., 8, 1802 (2012), doi:10.1021/ct3000958
Usage: csg_call [OPTIONS] postupd kbibi
Used xml options:
cg.inverse.$sim_prog.rdf.with errors
cg.inverse. kBT
cg.inverse.program
cg.{non-}bonded.bondtype
cg.{non-}bonded.inverse.post _update options.kbibi.do
cg.{non-}bonded.inverse.post _update options.kbibi.factor
cg.{non-}bonded.inverse.post _update options.kbibi.kbint with errors
cg.{non-}bonded.inverse.post _update options.kbibi.r ramp (optional)
cg.{non-}bonded.inverse.post _update options.kbibi.start
cg.{non-}bonded.inverse.post _update options.kbibi.stop
cg.{non-}bonded.inverse.target
cg.{non-}}bonded.max
cg.{non-}bonded.min
cg.{non-tbonded.name
cg.{non-tbonded.step

10.5.53 postupd pressure.sh

This script implements the pressure update
Usage: csg_call [OPTIONS] postupd pressure infile outfile
Used xml options:
cg.inverse. kBT
cg.inverse.program
cg.{non-}bonded.inverse.p _target
cg.{non-}bonded.inverse.particle dens
cg.{non-}bonded.inverse.post _update options.pressure.$ptype.max A
cg.{non-}bonded.inverse.post _update options.pressure.$ptype.scale



10.5. SCRIPTS 75

cg.{non-}bonded.inverse.post _update options.pressure.do
cg.{non-}bonded.inverse.post _update options.pressure.type
cg.{non-}bonded.max

cg.{non-}bonded.min

cg.{non-}bonded.name

cg.{non-tbonded.step

10.5.54 postupd scale.sh

This script implements scaling of the potential update (.dpot)
Usage: csg_call [OPTIONS] postupd scale infile outfile
Used xml options:
cg.{non-}bonded.inverse.post _update options.scale
cg.{non-}bonded.name

10.5.55 postupd smooth.sh

This script implements smoothing of the potential update (.dpot)
Usage: csg_call [OPTIONS] postupd smooth infile outfile
Used xml options:
cg.{non-}bonded.inverse.post _update options.smooth.iterations
cg.{non-}}bonded.name

10.5.56 postupd splinesmooth.sh

This script implements smoothing of the potential update (.dpot)
Usage: csg_call [OPTIONS] postupd splinesmooth infile outfile
Used xml options:
cg.{non-}bonded.inverse.post update options.splinesmooth.step
cg.{non-}bonded.max
cg.{non-}bonded.min
cg.{non-}}bonded.name
cg.{non-tbonded.step

10.5.57 potential extrapolate.sh

This script extrapolates a potential in the correct way depending on its type.
Usage: csg_call [OPTIONS] potential extrapolate [options] input output
Allowed options:
——help show this help
——clean remove all intermediate temp files
-—type TYPE type of the potential possible: non-bonded bond angle dihedral
——1fct FCT type of the left extrapolation function possible: default: exponential(non-
bonded), linear (bonded)
——rfct FCT type of the right extrapolation function possible: constant linear quadratic
exponential sasha default: constant(non-bonded), linear (bonded)
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—-—avg-points INT number of average points default: 3

10.5.58 potential shift.pl

This script shifts the whole potential by minimum (bonded potentials) or last value (non-bonded
potentials).
Usage: csg_call [OPTIONS] potential shift [OPTIONS] <in> <out>
Allowed options:
-h, —-help show this help message
-—type XXX change the type of potential Default: non-bonded
Possible types: non-bonded, bond, angle, dihedral, bonded
Examples:
potential_shift.pl --type bond table.in table.out

10.5.59 potential to dlpoly.sh

This script is a high class wrapper to convert a potential to the dlpoly format
Usage: csg_call [OPTIONS] convert_potential dlpoly
Used xml options:
cg.inverse.dlpoly.angles.table grid
cg.inverse.dlpoly.bonds.table end
cg.inverse.dlpoly.bonds.table grid
cg.inverse.dlpoly.dihedrals.table grid
cg.inverse.dlpoly.table end
cg.inverse.dlpoly.table grid
cg.{non-}bonded.bondtype
cg.{non-tbonded.dlpoly.header
cg.{non-tbonded.dlpoly.header (optional)
cg.{non-tbonded.step
cg.{non-}bonded.typel
cg.{non-}tbonded.type2

10.5.60 potential to generic.sh

This script is a high class wrapper to convert a potential to the generic 3 column tab format used

by espresso and espressopp

Usage: csg_call [OPTIONS] convert_potential espresso

Used xml options:
cg.inverse.program
cg.{non-}bonded.bondtype
cg.{non-tbonded.inverse.$sim _prog.table begin (optional)
cg.{non-}bonded.inverse.$sim prog.table bins (optional)
cg.{non-}bonded.inverse.$sim _prog.table end (optional)
cg.{non-}bonded.inverse.§sim prog.table left extrapolation (optional)
cg.{non-}bonded.inverse.$sim prog.table right extrapolation (optional)
cg.{non-}bonded.max
cg.{non-}bonded.min
cg.{non-}tbonded.step
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10.5.61 potential to gromacs.sh

This script is a wrapper to convert a potential to gromacs
Usage: csg_call [OPTIONS] convert_potential gromacs [options] input output
Allowed options:
——help show this help
——clean remove all intermediate temp files
——-no-r2d do not converts rad to degree (scale x axis with 180/3.1415) for angle and dihedral
Note: VOTCA calcs in rad, but gromacs in degree
-—no-shift do not shift the potential
——step XXX use XXX as step for the interaction
Used xml options:
cg.inverse.gromacs.mdp
cg.inverse.gromacs.pot _max (optional)
cg.inverse.gromacs.table bins
cg.inverse.gromacs.table end
cg.inverse.gromacs.table end (optional)
cg.{non-}bonded.bondtype
cg.{non-}bonded.max
cg.{non-tbonded.step

10.5.62 potential to lammps.sh

This script is a high class wrapper to convert a potential to the lammps format
Usage: csg_call [OPTIONS] convert_potential lammps [options] input output
Allowed options:
——help show this help
——clean remove all intermediate temp files
—-no-r2d do not converts rad to degree (scale x axis with 180/3.1415) for angle interactions
Note: VOTCA calcs in rad, but lammps uses degrees for angle
-—no-shift do not shift the potential
Used xml options:
cg.inverse.program
cg.{non-}bonded.bondtype
cg.{non-}tbonded.inverse.$sim _prog.table begin (optional)
cg.{non-}bonded.inverse.$sim _prog.table bins (optional)
cg.{non-}bonded.inverse.$sim_prog.table end (optional)
cg.{non-}bonded.inverse.§sim _prog.table left extrapolation (optional)
cg.{non-}bonded.inverse.$sim _prog.table right extrapolation (optional)
cg.{non-}bonded.inverse.lammps.scale
cg.{non-}bonded.inverse.lammps.y _scale
cg.{non-}bonded.max
cg.{non-}bonded.min
cg.{non-}bonded.step

10.5.63 potentials to dlpoly.sh
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This script converts all potentials to the format needed by dlpoly
Usage: csg_call [OPTIONS] convert_potentials dlpoly
Used xml options:

cg.{non-}bonded.name

10.5.64 potentials to generic.sh

This script converts all potentials to the format needed by the simulation program
Usage: csg_call [OPTIONS] convert_potentials gromacs
Used xml options:

cg.inverse.program

cg.{non-}bonded.inverse.$sim _prog.table

cg.{non-tbonded.name

10.5.65 pre update re.sh

This script implements the pre update tasks for the Relative Entropy Method
Usage: csg_call [OPTIONS] pre_update re
Used xml options:

cg.inverse.program

10.5.66 prepare generic.sh

This script prepares potentials in a generic way
Usage: csg_call [OPTIONS] prepare ibi
Used xml options:

cg.inverse.method

cg.inverse.program

cg.{non-}bonded.name

10.5.67 prepare generic single.sh

This script implements the prepares the potential in step 0, using pot.in or by resampling the
target distribution
Usage: csg_call [OPTIONS] prepare_single ibi
Used xml options:
cg.inverse.dist _min
cg.inverse. kBT
cg.{non-}bonded.bondtype
cg.{non-}bonded.inverse.target
cg.{non-}bonded.max
cg.{non-}bonded.min
cg.{non-}bonded.name
cg.{non-tbonded.step
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10.5.68 prepare imc.sh

This script initializes potentials for imc
Usage: csg_call [OPTIONS] prepare imc
Used xml options:
cg.bonded.name (optional)
cg.{non-tbonded.name

10.5.69 prepare optimizer.sh

This script initizalizes potentials for optimizer methods
Usage: csg_call [OPTIONS] prepare optimizer
Used xml options:

cg.inverse.optimizer.type

cg.inverse.program

cg.{non-}bonded.inverse.optimizer.parameters

10.5.70 prepare optimizer single.sh

This script
reads sinple interaction optimizer infile
checks if the number of values are enough
Usage: csg_call [OPTIONS] prepare_single optimizer N
where N is the total number of parameters
Used xml options:
cg.inverse.optimizer.type
cg.{non-}bonded.inverse.optimizer.parameters
cg.{non-tbonded.name

10.5.71 prepare re.sh

This script implements the preparation of the relative entropy method iteration
Usage: csg_call [OPTIONS] prepare re
Used xml options:

cg.inverse.program

cg.{non-}bonded.inverse.target

cg.{non-tbonded.name

10.5.72 pressure cor_simple.pl

This script calls the pressure corrections dU = A (1 —r/r.), where A = —0.1kpT * max(1, |p.ur —
prarget|  scale) * sgn(p.ur — prarget)

Usage: csg_call [OPTIONS] pressure_cor simple p_cur outfile kBT min:step:max
scale p_target
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10.5.73 pressure cor_ wjk.pl

This script calls the pressure corrections like in Wan, Junghans & Kremer, Euro. Phys. J. E
28, 221 (2009) Basically dU=A*(1-r/r _c) with A= -max(0.1k_B T, Int ) * sign(p_cur-p_ target)
and Int is the integral from Eq. 7 in the paper.

Usage: csg_call [OPTIONS] pressure_cor wjk p_cur outfile kBT min:step:max
scale p_target particle_dens rdf_file

10.5.74 resample target.sh

This script resamples distribution to grid spacing of the setting xml file and extrapolates if needed
Usage: csg_call [OPTIONS] resample target input output
Used xml options:

cg.{non-}bonded.bondtype

cg.{non-}bonded.max

cg.{non-}bonded.min

cg.{non-}}bonded.name

cg.{non-}tbonded.step

10.5.75 run_ genericsim.sh

This script runs a generic simulation program
Usage: csg_call [OPTIONS] run espresso
Used xml options:
cg.inverse.$sim_ prog.command
cg.inverse.$sim_ prog.opts (optional)
cg.inverse.$sim_ prog.script (optional)
cg.inverse.method
cg.inverse.program

10.5.76 run_gromacs.sh

This script runs a gromacs simulation or pre-simulation

Usage: csg_call [OPTIONS] run gromacs [--pre]

Used external packages: gromacs

Used xml options:
cg.inverse.gromacs.conf
cg.inverse.gromacs.conf _out
cg.inverse.gromacs.grompp.bin
cg.inverse.gromacs.grompp.opts (optional)
cg.inverse.gromacs.index
cg.inverse.gromacs.mdp
cg.inverse.gromacs.mdrun.checkpoint
cg.inverse.gromacs.mdrun.command
cg.inverse.gromacs.mdrun.multidir (optional)
cg.inverse.gromacs.mdrun.opts (optional)
cg.inverse.gromacs.pre simulation
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cg.inverse.gromacs.topol
cg.inverse.gromacs.topol _in
cg.inverse.gromacs.traj
cg.inverse.gromacs.trjcat.bin

10.5.77 simplex downhill processor.pl

Changes a simplex state according to the current state using the Nelder—-Mead method or downhill
simplex algorithm.
Usage: csg_call [OPTIONS] simplex precede_state current_state new_state

10.5.78 table average.sh

This script creates averages tables and also calculates the error.
Usage: csg_call [OPTIONS] table average [options] tablel table2 table3
Allowed options:
-h, —-help show this help
-0, ——output NANE output file name
—-—cols NUM Number of columns per file Default: 3
—-—col-y NUM y-data column Default: 2
—-—col-x NUM x-data column Default: 1
“--clean “ Clean intermediate files
Examples:
table_average.sh —--output CG-CG.dist.new CG-CGx*.dist.new

10.5.79 table change flag.sh

This script changes the flags (col 3) of a table
Usage: csg_call [OPTIONS] table change_flag input outfile

10.5.80 table combine.pl

This script combines two tables with a certain operation
Usage: table_combine.pl [OPTIONS] <in> <in2> <out>
Allowed options:
——error ERR Relative error Default: 1e-05
——op OP Operation to perform Possible: =,+,-* /.d,d2,xd = |yl-y2|, d2 = (y1-y2)"2, x=*
(to avoid shell trouble)
——sum Output the sum instead of a new table
——die Die if op '=’ fails
-—no-flags Do not check for the flags
--scale XXX Scale output/sum with this number Default 1
-—withflag FL only operate on entries with specific flag in src
-h, —-—-help Show this help message
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10.5.81 table dummy.sh

This script creates a zero table with grid min:step:max using linear interpolation
Usage: csg_call [OPTIONS] table dummy [options] min:step:max outfile
Allowed options:
—-y1 X.X using X.X instead of 0 for the 1st y-value this creates a linear instead of a constant
table
—--y2 X.X using X.X instead of 0 for the 2nd y-value this creates a linear instead of a
constant table
——help show this help
——clean remove all intermediate temp files

10.5.82 table extrapolate.pl

This script extrapolates a table
Usage: csg_call [OPTIONS] table extrapolate [OPTIONS] <in> <out>
Allowed options:
—-—avgpoints A average over the given number of points to extrapolate: default is 3
——function constant, linear, quadratic or exponential, sasha: default is quadratic
-—-no-flagupdate do not update the flag of the extrapolated values
—-—region left, right, or leftright: default is leftright
——curvature C curvature of the quadratic function: default is 10000, makes sense only
for quadratic extrapolation, ignored for other cases
—h, —--help Show this help message
Extrapolation methods: always m = dy/dx = (y[i + A] — y[i])/(«[i + A] — z[i])
constant: y = y0
linear: y =ax +b b= —m=xxo+yo;;a=m
sasha: y = a * (x — b)? b= (20 — 2yo/m) a = m?/(4xyo)
exponential: y = a *xexp(b*x) a=y0*exp(—m*x0/y0) b=m/yo
quadratic: y = C x (z +a)2+b a=m/(2xC) — 20 b=yo—m?/(4xC)

10.5.83 table functional.sh

This script creates a table with grid min:step:max for the a functional form
Usage: csg_call [OPTIONS] table functional [options] output
Allowed options:
-h, —-help show this help
——grid XX:XX:XX Output grid of the table
——var X=Y Set a variable used in the function
——fct FCT functional form of the table
—-headerfile XXX Extra headerfile for the plot script (useful for complicated functions)
—-—gnuplot CMD Gnuplot command to use Default: gnuplot
“--clean “ Clean intermediate files
Used external packages: gnuplot
Examples:
table_functional.sh —--grid 0:0.1:1 —-—-fct xxx2 CG-CG.tab.new
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10.5.84 table get value.pl

This script print the y value of x, which is closest to X.
Usage: csg_call [OPTIONS] table get_value [OPTIONS] X infile
Allowed options:

-h, —--help Show this help message

10.5.85 table integrate.pl

This script calculates the integral of a table. Please note the force is the NEGATIVE integral of
the potential (use ’table linearop’ and multiply the table with -1)
Usage: csg_call [OPTIONS] table integrate [OPTIONS] <in> <out>
Allowed options:
-—with-errors calculate error
--with-S Add entropic contribution to force 2kgT/r
——kbT NUMBER use NUMBER as kp * T for the entropic part
——from Integrate from left or right (to define the zero point) Default: right
—-—sphere Add spherical volume term (r?)
-h, —--help Show this help message
Examples:

table_integrate.pl ——-with-S —--kbT 2.49435 tmp.force tmp.dpot

10.5.86 table linearop.pl

This script performs a linear operation on the y values: ypew = @ * yYorqg + b
Usage: csg_call [OPTIONS] table linearop [OPTIONS] <in> <out> <a> <b>
Allowed options:
-h, ——-help Show this help message
——withflag FL only change entries with specific flag in src
—--with-errors also read and calculate errors
—-—on-x work on x values instead of y values
Examples:
table_linearop.pl tmp.dpot.cur tmp.dpot.new 1.0 0.0

10.5.87 table scale.pl

This script applies a prefactor to infile. The prefactor is is interpolated lines between the prefactorl
and prefactor2.
Usage: csg_call [OPTIONS] table scale [OPTIONS] infile outfile prefactorl
prefactor?
Allowed options:

-h, —--help Show this help message
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10.5.88 table smooth.pl

This script smoothes a table
Usage: csg_call [OPTIONS] table smooth infile outfile

10.5.89 table switch border.pl

This script applies a switching function to the end of the table to switch it smoothly to zero by y
= y*cos( pi*(x-x_switch)/(2*(x_end-x_switch)) )
Usage: csg_call [OPTIONS] table switch_border infile outfile <x_switch>

10.5.90 table to tab.pl

This script converts csg potential files to the tab format (as read by espresso or lammps or dlpoly).
In addition, it does some magic tricks:

shift the potential, so that it is zero at the cutoff
Usage: csg_call [OPTIONS] convert_potential tab [OPTIONS] <in> <derivatives_in>
<out>
Allowed options:

-h, —-help show this help message

——type XXX change the type of xvg table Default: non-bonded

——header XXX Write a special simulation programm header
Examples:

table_to_tab.pl --type non-bonded table.in table_b0.xvg

10.5.91 table to xvg.pl

This script converts csg potential files to the xvg format.
Usage: csg_call [OPTIONS] convert_potential xvg [OPTIONS] <in> <out>
Allowed options:
-h, —-help show this help message
——type XXX change the type of xvg table Default: non-bonded
--max MAX Replace all pot value bigger MAX by MAX
Possible types: non-bonded (=C12), bond, C12, C6, CB, angle, dihedral
Examples:
table_to_xvg.pl —--type bond table.in table_b0.xvg

10.5.92 tables jackknife.pl

This script has no help
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10.5.93 tag file.sh

Add table comment to the head of a file
Usage: csg_call [OPTIONS] tag file input output

10.5.94 update ibi.sh

This script implements the function update for the Inverse Boltzmann Method
Usage: csg_call [OPTIONS] update ibi
Used xml options:

cg.inverse.program

10.5.95 update ibi pot.pl

This script calecs dU out of two rdfs with the rules of inverse boltzmann
In addition, it does some magic tricks:
do not update if one of the two rdf is undefined
Usage: csg_call [OPTIONS] update ibi_pot target_rdf new_rdf cur_pot outfile
kBT

10.5.96 update ibi_single.sh

This script implemtents the function update for a single pair for the Inverse Boltzmann Method
Usage: csg_call [OPTIONS] update ibi_single
Used xml options:
cg.inverse. kBT
cg.{non-}bonded.bondtype
cg.{non-}bonded.inverse.do_potential
cg.{non-}bonded.inverse.target
cg.{non-}bonded.max
cg.{non-}bonded.min
cg.{non-}bonded.name
cg.{non-}bonded.step

10.5.97 update imc.sh

This script implements the function update for the Inverse Monte Carlo Method
Usage: csg_call [OPTIONS] update imc
Used xml options:

cg.inverse.imc.default _reg

cg.inverse.program

cg.{non-tbonded.inverse.imc.group
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10.5.98 update imc_single.sh

This scripts multiplies the dpot tables for each interaction when using IMC by kBT and handles
potential update schemes
Usage: csg_call [OPTIONS] update imc_single
Used xml options:

cg.inverse. kBT

cg.{non-}bonded.bondtype

cg.{non-}bonded.inverse.do_ potential

cg.{non- }bonded.max

cg.{non-}bonded.min

cg.{non-}bonded.name

cg.{non-}tbonded.step

10.5.99 update optimizer.sh

This script:
implements the update function for each non-bonded interaction
performs optimizer algorithm if no pending parameter sets present
continues with next parameter set in table if otherwise

Usage: csg_call [OPTIONS] update optimizer

Used xml options:
cg.inverse.optimizer.type
cg.{non-}}bonded.name

10.5.100 update optimizer _single.sh

This script:
calculates the new property
compares it to the target property and calculates the target function accordingly
Usage: csg_call [OPTIONS] update optimizer_single
Used xml options:
cg.inverse.program
cg.{non-}bonded.inverse.optimizer.target _weights
cg.{non-}bonded.inverse.optimizer.targets
cg.{non-}bonded.inverse.post__update (optional)
cg.{non-tbonded.name

10.5.101 update re.sh

This script implements update step of relative entropy method by csg reupdate program
Usage: csg_call [OPTIONS] update re
Used xml options:

cg.inverse.$sim_prog.equi_time

cg.inverse.$sim _prog.first frame

cg.inverse.$sim_ prog.re.topol (optional)

cg.inverse.$sim_ prog.re.traj (optional)
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cg.inverse.$sim_ prog.topol
cg.inverse.$sim_ prog.traj
cg.inverse.program
cg.inverse.re.csg_reupdate.opts (optional)
cg.{non-}bonded.inverse.target
cg.{non-}bonded.name
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